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Reasoning about the consequences of actions in a
stochastic, partially observable domain is a key de-
sirable feature of intelligent agents. In environments
with many observations and actions building a fully
detailed model of the world may not be possible and
may require too much data. Instead, an agent may
want to only answer a restricted set of questions, i.e.
make a limited number of predictions about the future.
In this abstract we propose an approach for automati-
cally learning such an approximate model of a partially
observable environment from data, with respect to a
set of predictions of interest.

Let A be a finite set of actions, and O a finite set of
observations, such that at each time step i, the agent
takes an action ai ∈ A and the environment produces
an observation oi ∈ O. We define a history at time
t to be a sequence of actions and observations, h =
a0o0a1o1 . . . atot. We call a future sequence starting
at time t + 1 a test. A prediction is the probability
that, the set of observations of the test occurs, if the
set of actions is executed. Predictions of tests can
be thought of as questions the agent wants to answer
about the world.

1. Summarizing the data

We now consider a specific way to restrict the set of
tests of interest by defining a mechanism called a probe
to filter the data available to the agent. Intuitively, fil-
tering the space of future tests collapses the space of
predictions the agent is interested in. Further, filtering
histories extracts predictive information from the time
series. We define a probe f on tests as a mapping on
observation sequences, f : O∗ → R, with the following
restriction: given observation sequences ω1, ω2, and an
observation o ∈ O, then f(ω1) = f(ω2) ⇒ f(ω1o) =
f(ω2o). The intuition is that if an agent cannot distin-
guish two tests at time step t, any future observations
will not change this. Similarly, we can define a probe
on histories as a mapping on action-observation se-
quences, g : (A×O)∗ → R. Although many functions
could be considered as potential history probes, only
some would be useful. In particular, we would like to

find probes that maintain enough information to pre-
dict well the outcomes of the test probes (i.e., the class
of tests in which we are interested). A good heuristic
for aggregating histories that hold the same amount
of predictive information is based on the eligibility
trace notion found in reinforcement learning. Eligibil-
ity traces are a means of temporarily assigning credit
for the occurrence of an event (in our case, the occur-
rence of observations in our set of interest). For exam-
ple, given a history h = a0o0 . . . aτoτ . . . aτ+koτ+k, let
g be a probe that assigns r1 for the occurence of an
observation o, and r2 otherwise. Assume τ to be the
last time of occurence of o. Then, using a decay factor
γ, g(h) = γkr1 + γk−1r2 + . . . γ0r2.

2. Learning a predictive history model

We can now build a predictive machine, whose states
are summaries of observed histories, and observations
are predictions of tests of interest. The approach, pre-
sented in Algorithm 1, is based on three successive
clustering processes. First, the set of observed tests is
filtered using the test probe, forming the class of tests
of interest. Secondly, the f probe can be used to filter
the set of observed histories, forming classes of histo-
ries that are indistinguishable to the agent, i.e. they
predict all tests with the same accuracy. The granular-
ity of the clustering is variable, and allows for approx-
imate constructions. This clustering gives the states
(summaries of histories) and observations (predictions
of tests) of the machine. Once these are formed, a
third layer of clustering is performed, this time using
the g probe on histories. The idea here is to further
minimize the size of the final model, while maintaining
its predictive power. Finally, deterministic transitions
are added in a natural way: given a history h we can
obtain its successor states by concatenating all possi-
ble action-observation pairs. It is also interesting to
note that f and g can be applied to the space of his-
tories in any order, with considerably different results.
The probe on tests is very specific and easy to con-
struct, if the set of observations of interest is known.
In most AI environments, this could be the observa-
tion denoting a goal state, for example. However, the



Algorithm 1 Learning the history model
Input: history test pairs: (h, t); probes: f, g; error
threshold: εf , εg
Compute probed predictions 〈h|t〉f
T ′ = cluster tests using f :
(i.e. t1 ∼f t2 if ∀h histories, |〈h|t1〉f −〈h|t2〉f | ≤ εf )
H ′ = cluster histories using f.
(i.e. h1 ∼f h2 if ∀t tests, |〈h1|t〉f − 〈h2|t〉f | ≤ εf )
H ′ = cluster histories using g.
(i.e. h1 ∼g h2 if |g(h1)− g(h2)| ≤ εf )
Create model

probe on histories is entirely given by heuristics and
an insight in the domain. Thus, applying it before the
probe on tests can significantly affect the correctness
of the machine.

3. Experiment

We illustrate our results on a small probabilistic do-
main, shown in Figure 1. The agent transitions from
state i to state i + 1 with probability p, and to state
i+ 1 with probability 1− p, where p = 0.7. There are
two deterministic observations, dark(D), and light(L).
We imagine that the agent is interested in tests dis-
tinguishing the light observation, and thus both the f
and g probes collapse the space of tests and histories
with respect to this observation.

Figure 1. Tunnel Example
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Figure 2 contains the final model representation
learned by the algorithm on a particular run,
where s1 = aD, s2 = aDaD, s3 = aDaDaD,
s4 = aDaDaL, s6 = aDaDaLaD, . . ., s10 =
aDaDaLaDaDaDaDaDaD. The size of the machine
greatly depends on the choice of εf and εg parameters.
As these values increase, the number of states in the
machine decreases to a minimum of 4, corresponding
exactly to the 4 states in the underlying model, which
is already minimal (i.e. for each of the 4 states there
exist a test whose prediction distinguishes it from the
other 3).

Finally, in Figure 3 we present the total average pre-
diction error over all pairs of histories and tests, av-
eraged over 10 trials. We compare the error obtained
from our algorithm with that obtained by two mod-
els created using Expectation Maximization(EM) on a
model with 10 states: one in which the parameters are

Figure 2. Model representation
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initialized to uniform values, and the second in which
they are initialized to random values. Note that the
initial values of the algorithm greatly affect its accu-
racy, the former initialization performing significantly
worse. However, it can be seen than both EM models
reach local optima, and do not improve as more data
is seen.

Figure 3. Error comparison
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