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The Learning Systems department of Siemens CT
has been working on the application of reinforcement
learning (RL) for control of complex technical systems
for several years, especially in the context of gas tur-
bines. One of the long-term goals is to enhance gas
turbine control by deploying RL-based methods in se-
ries. Our poster will present our general approach, RL
methods developed in the past and used in that con-
text, and open problems that are subject of current
and future research.

When trying to apply off-the-shelf RL methods for
a problem like gas turbine control, one faces several
problems. The state space is typically continuous and
high-dimensional, moreover it often is non-Markovian.
Normally, the action space is continuous as well and
spanned by several dimensions, but here a discretiza-
tion and use of a set of discrete actions usually works
well. Many standard RL algorithms require a large
amount of interactions with the system to obtain a
good policy, which causes another difficulty, as inter-
actions with the system and even just observations
are extremely expensive. It is therefore important to
be able to deal with RL problems with possibly non-
Markovian, high-dimensional state spaces in a data-
efficient manner.

In recent years, methods have been developed that
are able to deal with high-dimensional state spaces
data-efficiently. We mention neural rewards regres-
sion (NRR) (Schneegass et al., 2007), which can be re-
garded as a generalization of neural fitted Q iteration
(Riedmiller, 2005), and the recurrent control neural
network (RCNN) (Schaefer et al., 2007). NRR trans-
forms the optimization problem stated by the Bellman
optimality equation into a regression problem by utiliz-
ing a neural network with support for shared weights.
The network consists of two parts, both representing
the Q-function and sharing the same weights. Typi-

cally, only one part of the network is allowed to learn
(left part), while the gradient flow to the other part
is blocked (right part); the state and action are in-
put to the left sub-network, the successor state is fed
into the right network. The output node has the re-
ward as target and sums the output of the left network
with the output of the right network weighted by −γ.
The network is trained offline. Once the training is
finished, the left network can be extracted and repre-
sents the Q-function. The RCNN also consists of two
parts. The first part is a recurrent neural network with
past and future lags. It is used to approximate the sys-
tem dynamics. The second part is a control network
that builds on the first part. It represents and learns
the policy, its target is maximizing the sum of the dis-
counted future rewards. The system identifying char-
acteristic of the RCNN can also be used to construct a
compact approximate Markovian state representation
from the high-dimensional input state space (Schäfer
et al., 2007). Based on this state estimation it is also
possible to use other (standard) RL methods. NRR
and RCNN have both successfully been used to iden-
tify near-optimal policies for a RNN-based gas turbine
simulation. Since the simulation is based on actual ob-
servations of a real turbine, it was possible to transfer
new favorable working points found by RL applied to
the simulation to the real turbine.

When moving from a simulation to a real turbine, ad-
ditional problems have to be considered. It is not ad-
visable to use RL to learn from scratch to control a gas
turbine. Instead, an already existing default controller
should be enhanced by RL methods. In that context
the problem of safe exploration is important, for which
first ideas have been developed using a simplified sim-
ulation that represents a system that might become
unstable when moved beyond a certain point (Hans
et al., 2008). Subject of safe exploration is exploring
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the system without reaching that “point of no return”.
The proposed approach requires access to an already
existing and safely acting controller, referred to as de-
fault policy. The behavior of that default policy is
observed and gradually exploratory actions are taken
while learning a safety function. That safety function
is queried to decide whether a state-action pair is safe
to explore. Meanwhile, the approach has also been
successfully applied to a RNN-based simulation.

Another important aspect of a real-world application
is the consideration of uncertainty. Only when dealing
with completely deterministic systems and noise-free
observations, one observation suffices to fully describe
a transition with no uncertainty left. In all other cases
the estimators are affected by uncertainty. Ignoring
the uncertainty might lead to false conclusions. An ap-
plication of uncertainty propagation to the Bellman it-
eration was proposed in (Schneegaß et al., 2008), which
leads to a Q-function together with its uncertainty.
The knowledge of uncertainty is then used to obtain so-
called certain-optimal policies, which are considerably
more robust. However, propagating the uncertainty
in the proposed way adds a high computational bur-
den. Recent research has tried to weaken that prob-
lem by approaching an approximation instead of ex-
act uncertainty propagation. Although policies gener-
ated by the approximate algorithm do not perform as
well as those produced by the original, exact version,
the fraction of policies performing extremely badly can
be significantly lowered compared to the uncertainty-
ignorant standard approach. Future research will con-
sider using the knowledge of uncertainty to guide ex-
ploration.

For truly autonomous RL in the context of gas tur-
bine control more issues have to be considered. We
expect a RL-based gas turbine controller to calculate
new policies offline and switch to a new policy once a
better one has been identified. It is therefore neces-
sary to evaluate a policy without actually executing it
to make sure that the policy performs well. An obvi-
ous solution seems the use of a simulation, but in that
case one has to ensure that the simulation represents
the real system sufficiently well. Other issues concern
the learning process. Many existing algorithms have
the potential to deliver near-optimal policies, but need
lots of manual tuning. Parameters are usually not eas-
ily transferable from one problem to another, so each
problem needs its own tuning. For autonomous RL
it is desirable to lessen then need for manual tuning,
which will thus be subject of future work.
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