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1. Introduction

We promote the covariance matrix evolution strategy
(CMA-ES, Hansen et al., 2003; Hansen, 2006; Suttorp
et al., 2009) for direct policy search (an approach also
referred to as Neuroevolution Strategies when applied
to neural network policies). The algorithm gives strik-
ing results on reinforcement learning (RL) benchmark
problems (Gomez et al., 2008; Heidrich-Meisner and
Igel 2008a; 2008c¢; in press), see Table 1 for an exam-
ple.

2. The CMA-ES for RL

Evolution strategies are random, derivative-free search
methods (Beyer, 2007). They iteratively sample a set
of candidate solutions from a probability distribution
over the search space (i.e., the space of policies), eval-
uate these potential solutions, and construct a new
probability distribution over the search space based
on the gathered information. In evolution strategies,
this search distribution is parametrized by a set of u
candidate solutions (parents) and by parameters of the
variation operators that are used to create new policies
(offspring) from the p candidate policies.

In each iteration k of the CMA-ES, the /th candidate
policy with parameters wl(k-H) eR™ (I € {L,....,7A})
is generated by multi-variate Gaussian mutation and
weighted global intermediate recombination:
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The mutation zl(k) ~ N(0,C™) is the realization of a
normally distributed random vector with zero mean
and covariance matrix C*). The recombination is
given by the weighted mean m®*) = Sy wlwl(:k)\),
where :I:l(k)\) denotes the [th best individual among
:ng), cee :B(Ak). This corresponds to rank-based selec-
tion, in which the best p of the A offspring form the
next parent population. A common choice for the re-
combination weights is w; o< In(pu+1)—1In(l), ||wl||; = 1.
The quality of an individual ccl(kH) is determined by
evaluating the corresponding policy. This evaluation

is based on the Monte Carlo return of one or several

episodes using the policy with parameters :I:l(kﬂ).

The CMA-ES is a variable-metric algorithm adapting
both the n-dimensional covariance matriz C®) of the
normal mutation distribution as well as the global step
size o) € Rt. The covariance matrix update has
two parts, the rank-1 update considering the change
of the population mean over time and the rank-u up-
date considering the successful variations in the last
iteration. For example, the rank-1 update is based
on a low-pass filtered evolution path p®*) of successful
steps
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and aims at changing C*) to make steps in the promis-
ing direction p**+ more likely by morphing the co-

T
variance towards {pgkﬂ)} [pékﬂ)} . For details of the

CMA-ES (the choice of the constants c1,co € R, the
rank-y update, the update of o, etc.) we refer to the
original articles by Hansen et al. (Hansen et al., 2003;
Hansen, 2006).

3. Why CMA-ES for RL?
Employing the CMA-ES for RL

1. allows for direct search in policy space and is not
restricted to optimizing policies “indirectly” by
adapting state-value or state-action-value func-
tions,

2. is straightforward to apply and robust w.r.t. tun-
ing of hyperparameters (e.g., compared to tempo-
ral difference learning algorithms or policy gradi-
ent methods),

3. is based on ranking policies, which is less suscep-
tible to uncertainty and noise (e.g., due to ran-
dom rewards and transitions, random initializa-
tion, and noisy state observations) compared to
estimating a value function or a gradient of a per-
formance measure w.r.t. policy parameters,
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method reward function
standard  damping
RWG 415,209 1,232,296
CE - (840,000)
SANE 262,700 451,612
CNE 76,906 87,623
ESP 7,374 26,342
NEAT - 6,929
RPG (5,649) -
CoSyNE 1,249 3,416
CMA-ES 860 1,141

Table 1. Mean number of episodes required for different RL
algorithms to solve the partially observable double pole bal-
ancing problem (i.e., pole and cart velocities are not ob-
served) using the standard performance function and us-
ing the damping performance function, respectively (see
Gruau et al., 1996). The CMA-ES adapts standard re-
current neural network representing policies. The Neu-
roevolution Strategy results are taken from the paper by
Heidrich-Meisner and Igel (in press) and the other results
were compiled by Gomez et al. (2008). The abbrevia-
tion RWG stands for Random Weight Guessing, PGRL for
Policy Gradient RL, and RPG for Recurrent Policy Gra-
dients. The other methods are evolutionary approaches,
CNE stands for Conventional Neuroevolution, ESP for En-
forced Sub-Population, NEAT for NeuroEvolution of Aug-
menting Topologies , and CoSyNE for Cooperative Synapse
Neuroevolution (see Gomez et al., 2008; Heidrich-Meisner
& Igel, in press, for references).

4. allows for simple uncertainty handling strategies
to dynamically adjust the overall number and
the distribution of roll-outs for evaluating policies
in each iteration in order to learn efficiently in
the presence of uncertainty and noise (Heidrich-
Meisner and Igel 2008b; 2009),

5. is a variable-metric algorithm learning an appro-
priate coordinate system for a specific problem
(by means of adapting the covariance matrix and
thereby considering correlations between parame-
ters),

6. can be applied if the function approximators are
non-differentiable, whereas many other methods
require a differentiable structure, and

7. extracts a search direction, stored in the evolution
path pgk), from the scalar reward signals.

Arguably, the main drawback of the CMA-ES for RL
in its current form is that the CMA-ES does not exploit
intermediate rewards, just final Monte Carlo returns.
This currently restricts the applicability of the CMA-
ES to episodic tasks and may cause problems for tasks

with long episodes. Addressing these issues will be
part of out future research.
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