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1. Introduction

We promote the covariance matrix evolution strategy
(CMA-ES, Hansen et al., 2003; Hansen, 2006; Suttorp
et al., 2009) for direct policy search (an approach also
referred to as Neuroevolution Strategies when applied
to neural network policies). The algorithm gives strik-
ing results on reinforcement learning (RL) benchmark
problems (Gomez et al., 2008; Heidrich-Meisner and
Igel 2008a; 2008c; in press), see Table 1 for an exam-
ple.

2. The CMA-ES for RL

Evolution strategies are random, derivative-free search
methods (Beyer, 2007). They iteratively sample a set
of candidate solutions from a probability distribution
over the search space (i.e., the space of policies), eval-
uate these potential solutions, and construct a new
probability distribution over the search space based
on the gathered information. In evolution strategies,
this search distribution is parametrized by a set of µ

candidate solutions (parents) and by parameters of the
variation operators that are used to create new policies
(offspring) from the µ candidate policies.

In each iteration k of the CMA-ES, the lth candidate

policy with parameters x
(k+1)
l ∈ R

n (l ∈ {1, . . . , λ})
is generated by multi-variate Gaussian mutation and
weighted global intermediate recombination:

x
(k+1)
l = m(k) + σ(k)z

(k)
l

The mutation z
(k)
l ∼ N (0, C(k)) is the realization of a

normally distributed random vector with zero mean
and covariance matrix C(k). The recombination is
given by the weighted mean m(k) =

∑µ

l=1 wlx
(k)
l:λ ,

where x
(k)
l:λ denotes the lth best individual among

x
(k)
1 , . . . , x

(k)
λ . This corresponds to rank-based selec-

tion, in which the best µ of the λ offspring form the
next parent population. A common choice for the re-
combination weights is wl ∝ ln(µ+1)−ln(l), ‖w‖1 = 1.

The quality of an individual x
(k+1)
l is determined by

evaluating the corresponding policy. This evaluation
is based on the Monte Carlo return of one or several

episodes using the policy with parameters x
(k+1)
l .

The CMA-ES is a variable-metric algorithm adapting
both the n-dimensional covariance matrix C(k) of the
normal mutation distribution as well as the global step

size σ(k) ∈ R
+. The covariance matrix update has

two parts, the rank-1 update considering the change
of the population mean over time and the rank-µ up-
date considering the successful variations in the last
iteration. For example, the rank-1 update is based
on a low-pass filtered evolution path p(k) of successful
steps

p(k+1)
c ← c1 p(k)

c + c2
m(k+1) −m(k)

σ(k)

and aims at changing C(k) to make steps in the promis-
ing direction p(k+1) more likely by morphing the co-

variance towards
[

p
(k+1)
c

] [

p
(k+1)
c

]T

. For details of the

CMA-ES (the choice of the constants c1, c2 ∈ R
+, the

rank-µ update, the update of σ, etc.) we refer to the
original articles by Hansen et al. (Hansen et al., 2003;
Hansen, 2006).

3. Why CMA-ES for RL?

Employing the CMA-ES for RL

1. allows for direct search in policy space and is not
restricted to optimizing policies “indirectly” by
adapting state-value or state-action-value func-
tions,

2. is straightforward to apply and robust w.r.t. tun-
ing of hyperparameters (e.g., compared to tempo-
ral difference learning algorithms or policy gradi-
ent methods),

3. is based on ranking policies, which is less suscep-
tible to uncertainty and noise (e.g., due to ran-
dom rewards and transitions, random initializa-
tion, and noisy state observations) compared to
estimating a value function or a gradient of a per-
formance measure w.r.t. policy parameters,
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method reward function
standard damping

RWG 415,209 1,232,296
CE – (840,000)
SANE 262,700 451,612
CNE 76,906 87,623
ESP 7,374 26,342
NEAT – 6,929
RPG (5,649) –
CoSyNE 1,249 3,416
CMA-ES 860 1,141

Table 1. Mean number of episodes required for different RL
algorithms to solve the partially observable double pole bal-
ancing problem (i.e., pole and cart velocities are not ob-
served) using the standard performance function and us-
ing the damping performance function, respectively (see
Gruau et al., 1996). The CMA-ES adapts standard re-
current neural network representing policies. The Neu-
roevolution Strategy results are taken from the paper by
Heidrich-Meisner and Igel (in press) and the other results
were compiled by Gomez et al. (2008). The abbrevia-
tion RWG stands for Random Weight Guessing, PGRL for
Policy Gradient RL, and RPG for Recurrent Policy Gra-
dients. The other methods are evolutionary approaches,
CNE stands for Conventional Neuroevolution, ESP for En-
forced Sub-Population, NEAT for NeuroEvolution of Aug-
menting Topologies , and CoSyNE for Cooperative Synapse
Neuroevolution (see Gomez et al., 2008; Heidrich-Meisner
& Igel, in press, for references).

4. allows for simple uncertainty handling strategies
to dynamically adjust the overall number and
the distribution of roll-outs for evaluating policies
in each iteration in order to learn efficiently in
the presence of uncertainty and noise (Heidrich-
Meisner and Igel 2008b; 2009),

5. is a variable-metric algorithm learning an appro-
priate coordinate system for a specific problem
(by means of adapting the covariance matrix and
thereby considering correlations between parame-
ters),

6. can be applied if the function approximators are
non-differentiable, whereas many other methods
require a differentiable structure, and

7. extracts a search direction, stored in the evolution

path p
(k)
c , from the scalar reward signals.

Arguably, the main drawback of the CMA-ES for RL
in its current form is that the CMA-ES does not exploit
intermediate rewards, just final Monte Carlo returns.
This currently restricts the applicability of the CMA-
ES to episodic tasks and may cause problems for tasks

with long episodes. Addressing these issues will be
part of out future research.
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