
Knows What It Knows: A Framework for Self-Aware Learning

Lihong Li lihong@cs.rutgers.edu

Michael L. Littman mlittman@cs.rutgers.edu

Thomas J. Walsh thomaswa@cs.rutgers.edu

Rutgers University, Department of Computer Science, 110 Frelinghuysen Dr., Piscataway, NJ 08854

Recent reinforcement-learning (RL) algorithms
with polynomial sample-complexity guarantees
(e.g. (Kearns & Singh, 2002)) rely on distinguish-
ing between instances that have been learned with
sufficient accuracy and those whose outputs are still
unknown. This partitioning allows algorithms to
directly manage the exploration/exploitation tradeoff.
However, prior frameworks for measuring sample

complexity in supervised learning, such as Probably
Approximately Correct (PAC) and Mistake Bound
(MB), do not necessarily maintain such distinctions,
so efficient algorithms for learning a model in these
paradigms can be insufficient for efficient RL. In
this work, we describe the Knows What It Knows
(KWIK) framework (introduced by Li et al. (2008)),
which intrinsically relies upon the known/unknown
partitioning, embodying the sufficient conditions for
sample-efficient exploration in RL. We show that sev-
eral widely studied RL models are KWIK-learnable
and derive polynomial sample-complexity upper
bounds within this framework.

A KWIK algorithm begins with an input set X output

set Y , and observation set Z. The hypothesis class

H consists of a set of functions from X to Y : H ⊆
(X → Y). The target function h∗ ∈ H is unknown to
the learner. H and parameters ǫ and δ are known to
both the learner and environment. The environment
selects a target function h∗ ∈ H adversarially. The
agent then repeats the following:

1. The environment selects an input x ∈ X adver-
sarially and informs the learner.

2. The learner predicts an output ŷ ∈ Y ∪{⊥} where
⊥ means “I don’t know”.

3. If ŷ 6= ⊥, it should be accurate: |ŷ−y| ≤ ǫ, where
y = h∗(x). Otherwise, the entire run is considered
a failure. The probability of a failed run must be
bounded by δ.

4. If ŷ = ⊥, the learner makes an observation z ∈ Z
of the output, where z = y in the deterministic
case, z = 1 with probability y and 0 with proba-

bility 1− y in the Bernoulli case, or z = y + η for
zero-mean random variable η with additive noise.

Over a run, the total number of steps on which ŷ = ⊥
must be bounded by B(ǫ, δ), ideally polynomial in 1/ǫ,
1/δ, and parameters defining H . We refer to B(ǫ, δ) as
the KWIK bound. Note that this bound should hold
even if h∗ 6∈ H , although, obviously, outputs need not
be accurate in this case.

Like PAC, a KWIK algorithm is not allowed to make
mistakes. Like MB, inputs to a KWIK algorithm can
be selected adversarially. Instead of bounding mis-
takes, a KWIK algorithm must have a bound on the
number of label requests (⊥) it can make. By requir-
ing performance to be independent of the distribution,
a KWIK algorithm can be used in cases in which the
input distribution is dependent in complex ways on the
KWIK algorithm’s behavior, as can happen in on-line
or active learning settings. We note that any KWIK
algorithm can be turned into an MB algorithm (and
therefore PAC) by simply guessing instead of signaling
⊥, but cases exist where the reverse is not possible.

We now present some fundamental KWIK algorithms
to give a flavor of how the framework can be applied in
simple situations. The memorization algorithm can be
used when the input space X is finite and outputs are
observed noise free. To achieve this bound, it simply
keeps a mapping ĥ initialized to ĥ(x) = ⊥ for all x ∈
X . When the environment chooses an input x, the
algorithm reports ĥ(x). If ĥ(x) = ⊥, the environment
will provide a label y and the algorithm will assign
ĥ(x) := y. It will only report ⊥ once for each input,
so the KWIK bound is |X |.

The enumeration algorithm keeps track of Ĥ , the ver-
sion space. Each time the environment provides input
x ∈ X , the algorithm computes L̂ = {h(x)|h ∈ Ĥ}.
If |L̂| = 1, it means that all hypotheses left in Ĥ
agree on the output for this input, so this element
is returned. If |L̂| > 1, two hypotheses in the ver-
sion space disagree and the algorithm returns ⊥ and

Knows What It Knows: A Framework for Self-Aware Learning

receives the true label y, pruning the version space ac-
cordingly. It then computes an updated version space
Ĥ ′ = {h|h ∈ Ĥ ∧ h(x) = y} that contains at least one
fewer hypothesis than the old version space. If |Ĥ | = 1
at any point, |L̂| = 1, and the algorithm will no longer
return ⊥. Therefore, |H | − 1 is the maximum number
of ⊥ the algorithm can return.

The KWIK framework is not restricted to determinis-
tic problems. One fundamental KWIK algorithm for
learning stochastic concepts is the coin learning algo-

rithm, where we have a biased coin whose unknown
probability of heads is p. We want to learn an esti-
mate p̂ that is accurate (|p̂ − p| ≤ ǫ) with high prob-
ability (1 − δ). Each time the algorithm says ⊥, it
gets an independent trial that it can use to compute
p̂ = 1

T

∑T

t=1
zt, where zt ∈ {0, 1} is the tth observa-

tion in T trials with 1 for HEAD and 0 for TAIL. The
number of trials needed before we are 1 − δ certain
our estimate is ǫ accurate can be computed using a
Hoeffding’s bound: T ≥ 1

2ǫ2
ln 2

δ
= O

(

1

ǫ2
ln 1

δ

)

.

These and other simple solutions form the backbone of
more intricate KWIK algorithms for learning complex
models in dynamic environments. For instance, one
can consider a higher level version of the memoriza-
tion algorithm, the input-partition algorithm, which
learns several disjoint KWIK-learnable classes in par-
allel. Such a meta-algorithm can be used to learn a
Markov Decision Process (MDP) consisting of n states
and m actions. An agent observes state–action–next-
state transitions and must predict the probabilities for
transitions it has not yet observed. In the model-
based setting, the algorithm learns a mapping from
the size n2m input space of state–action–next-state
combinations to probabilities via Bernoulli observa-
tions. Thus, the problem can be solved via the input-
partition algorithm over a set of individual probabil-
ities learned via coin learning. The resulting KWIK

bound is O
(

n
2
m

ǫ2
ln nm

δ

)

. Online exploration in this

and other MDP forms can be driven using an “opti-
mism in the face of uncertainty” heuristic, resulting
in a PAC-MDP agent (see the description of KWIK-
Rmax by Li (2009) for details). Given this result, it is
important to determine what types of RL models are
KWIK learnable. We list some of the more prominent
ones here.

1. Linear Dynamics – Linear functions are a com-
mon model for the dynamics of continuous en-
vironments. Strehl & Littman (2008) showed
a noisy d-dimensional linear function can be
KWIK-learned with a KWIK bound of Õ(d3), and
polynomial dependencies on 1

ǫ
and 1

δ
.

2. Action Outcomes with Gaussian Distribu-

tions – Learning the parameters of a Gaussian
can be done using a variant of the coin-learning
algorithm, and multiple actions can be dealt with
using input-partition, just like in the flat MDP
case (Brunskill et al., 2008).

3. Dynamic Bayes Nets with Known Struc-

tures – For any given factor in the DBN, given
its parent values, the probability table for its next
value can be computed using the coin-learning al-
gorithm as in the flat MDP case. Multiple factors
can be learned in parallel and predictions made
using the “cross product” of these individual pre-
dictors (Li et al., 2008).

4. Dynamic Bayes Nets with Unknown Struc-

tures – In the case where the DBN structure is
not known, multiple hypotheses about the struc-
ture can be considered at any given time, using
a high level version of the enumeration algorithm
described earlier. Learning the DBN parameters
for each of these hypotheses proceeds as in the
known structure case (for details see Diuk et al.
(2009)). This bound significantly improves on a
previously derived bound for this problem.

In addition to unifying the analysis of model-based RL,
the KWIK framework can also be used to construct
sample-efficient model-free algorithms by considering
a hypothesis space of value functions or Bellman er-
rors (see (Li, 2009) for details). Thus, the KWIK
framework outlined in this paper serves as a power-
ful unifying tool for the analysis and development of
RL algorithms across a rich set of function classes.

References

Brunskill, E., Leffler, B. R., Li, L., Littman, M. L., & Roy,
N. (2008). CORL: A continuous-state offset-dynamics
reinforcement learner. UAI (pp. 53–61).

Diuk, C., Li, L., & Leffler, B. R. (2009). The adaptive k-
meteorologists problem and its application to structure
discovery and feature selection in reinforcement learning.
ICML.

Kearns, M., & Singh, S. (2002). Near-optimal reinforce-
ment learning in polynomial time. Machine Learning,
49, 209–232.

Li, L. (2009). A unifying framework for computational re-
inforcement learning theory. Doctoral dissertation, Rut-
gers University, New Brunswick, NJ.

Li, L., Littman, M. L., & Walsh, T. J. (2008). Knows what
it knows: A framework for self-aware learning. ICML.

Strehl, A. L., & Littman, M. L. (2008). Online linear re-
gression and its application o model-based reinforcement
learning. NIPS.

