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The temporal-difference (TD) algorithm from reinforcement learning is a prominent 
computational model of reward-related learning in the brain and behavior. The equation of the 
TD (or reward-prediction) error with the phasic responding of midbrain dopamine neurons 
represents the dominant computational hypothesis for processing by these neurons (Schultz et al., 
1997). In this poster, we discuss a three-part computational framework for building and 
extending current reinforcement-learning models of conditioning. As an illustrative example of 
this framework, we evaluate how the choice of stimulus representation influences the timing and 
generalization of reward predictions in these TD models of conditioning. 
 
When animals are exposed to reliable pairings of stimulus and reward, they not only learn the 
simple contingency between the two stimuli, they also learn the key temporal relationships. For 
example, when rabbits are trained that a stimulus light is followed 500 ms late by an annoying 
puff of air to the eye, rabbits learn to blink their eyes in response to the light, with the point of 
maximal closure occurring around 500 ms after the 
stimulus (e.g., Smith, 1968; Kehoe et al., 2009). This 
adaptive timing occurs right from the very first time 
that animals exhibit a measurable conditioned 
response (Kehoe et al., 2008). Most computational 
models of classical conditioning fail to address these 
real-time features of responding, focusing instead on 
questions about what the conditions are for learning.  
 
Here, we present a computational framework for 
extending models of conditioning to include these 
real-time components of responding. Figure 1 shows 
how we divide the problem of conditioning into 3 
processing stages: stimulus representation, prediction 
learning, and response generation. This general 
framework allows for the evaluation of the separable 
contributions of each of these computational 
components to the behaviour of the model.  
 
We used this 3-pronged framework to develop a full 
model of real-time responding in classical 
conditioning. The model uses the standard TD learning 
algorithm (Schultz et al., 1997; Sutton, 1988), but 
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Figure 1. Three stages of information 
processing in a computational model 
of classical conditioning. 



introduces a new 
temporal stimulus 
representation. 
Figure 2 depicts 
how, in this 
microstimulus 
representation, all 
stimuli, including 
rewards, spawn a 
series of internal 
microstimuli that 
grow weaker and 
more diffuse over 

time. These microstimuli are generated by a coarse-coding of a continuously decaying memory 
trace of that stimulus, through a series of radial basis functions. These microstimuli serve as the 
features that the TD algorithm uses to predict future reward. This natural stimulus representation 
produces better correspondence with existent data from the phasic firing of dopamine neurons, 
especially in experiments where rewards are omitted or mistimed (Ludvig et al., 2008).  
 
In the future, we anticipate following this framework to explore further stimulus representations, 
new learning algorithms, and alternate response generation mechanism. For example, we are 
currently examining whether switching to average-reward TD as the learning algorithm allows us 
to deal with different empirical phenomena, such as the timescale invariance of learning and 
hyperbolic temporal discounting. Another project evaluates a simple, empirically supported 
response rule allows for novel predictions about timed responding in rabbit eyeblink 
conditioning, including the effects of hippocampal lesions on trace conditioning (Ludvig et al., 
2009). Our long-term goal is to leverage this three-component framework into developing a suite 
of reinforcement-learning models of animal decision-making that learn from the real-time flow 
of experience. 
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Figure 2. Generation of microstimuli (stimulus features) through the coarse coding 
of a continuously decaying memory trace. Left panel is the memory trace; middle 
panel is the coarse coding; right panel is the resultant microstimuli. From Ludvig et 
al. (2008). 


