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Extended Abstract

Recent years have witnessed increasing interest in extending reinforcement learning (RL) to multi-
agent problems. Markov games have thoroughly been used to model multiagent RL problems [4] and
several researchers have applied single-agent RL methods (with adequate adaptations) to this multiagent
framework.

However, most multiagent RL research focuses on Markov games with finite state-spaces and only a
few works on multiagent learning address problem with infinite state-spaces. Some examples include the
work by Bowling and Veloso [1], Guestrin et al. [2] and Kok et al. [3]. Singh et al. [7] also refer the interest
of applying gradient ascent techniques to games with infinite state-spaces.

In this work, we focus on infinite fully-cooperative Markov games, also known as team Markov games
or multiagent MDPs (MMDPs). In MMDPs, all agents must commit upon a common joint behavior. We
assume that no explicit communication takes place, i.e., consensus emerges from the mutual interaction
among the different agents and with the environment. We thus feature cooperation as coordination: the
multiple decision-makers must coordinate their individual decisions to yield an optimal joint behavior.

In our approach we consider two distinct “subproblems” that must be solved simultaneously:

Learning the game where each agent must learn a compact representation of the game from which an
optimal policy can be determined (namely the optimal Q-function for the MMDP);

Learning to coordinate where, in the presence of multiple optimal policies, all decision-makers agree
upon one such policy without any explicit communication;

To address the first of the two problems above, we propose the use of Q-learning with soft-state
aggregation (Q-SSA). The combination of Q-learning and soft-state aggregation has been widely studied
in the RL literature [6]. One appealing property of Q-SSA for our purposes is that function approximation
can be used to compute in an off-policy manner the optimal Q-function, Q∗, associated with the MMDP.
Our results heavily rely on this fundamental property that Q-SSA converges w.p.1 to an approximation of
Q∗ when some fixed learning policy is used.

In addressing the problem of coordination, we propose the use of approximate biased adaptive play
(ABAP). This method was introduced and shown to converge in [5], when Q∗ is known. The ABAP
method differs from other coordination methods in several aspects. First of all, ABAP assumes that no
communication takes place. Furthermore, no assumption is made regarding previous knowledge on the
coordination algorithm of the other decision-makers. In particular, we do not assume that all decision-
makers follow the same decision-making or coordination algorithm. This is an important advantage of
ABAP: in the presence of a heterogeneous group of decision-makers, ABAP is still able coordinate to the
best decision-rule possible if, for some reason, the other decision-makers act sub-optimally.

To combine ABAP with Q-SSA, two main difficulties must be addressed. One first difficulty lies on the
fact that Q-SSA is implemented with a fixed learning policy. However, it is expected that, as the agents



in the game learn how to coordinate, their policy will slowly change. This means that the policy learned
by the agents running ABAP cannot be the one used to generate the sample transitions for the learning
algorithm. To tackle this difficulty, we consider an auxiliary process from which the sample transitions are
generated.

The second difficulty lies on the fact that, at each time instant t, the agents do not know the optimal
function Q∗ but, instead, have access only to an estimate, Q̂t, that they must use to choose their actions
and coordinate. The intuitive idea to overcome this difficulty is to use the estimate Q̂t to build at each
state a virtual matrix game that the agents can use to learn how to coordinate in that state. This virtual
game will include not only the optimal actions according to the current estimate Q̂t, but also actions that
“appear” to be close to optimal. Then, as t→ ∞, sub-optimal actions are gradually removed.

We dub the algorithm obtained by combining ABAP with Q-SSA as coordinated approximate Q-learning
(CAQL). Its basic procedure is as follows. Given an MMDP and a fixed learning policy, we apply standard
Q-SSA to build successive estimates Q̂t of Q∗. At each state visited during learning, all agents engage in
the matrix virtual game defined from Q̂t. The sole purpose of the agents in this game is to coordinate in
an optimal policy, disregarding any knowledge otherwise on the underlying learning process. As such,
the actions determined by the learning policy are irrelevant in the coordination process and vice-versa.

In the setting considered herein, we focus on games in which all agents have full access to the state of
the game and to the actions played by the other agents. However, there are many important problems in
which one or both such assumptions do not hold. There is a great body of work on problems with partial
observability, and many models of different complexity have been proposed to address such problems
(e.g., Dec-MDPs, Dec-POMDPs, I-POMDPs). An important and interesting topic for future research is the
extension of some of the ideas in this paper to problems with partial observability.
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