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Model-based Bayesian reinforcement learning provides an elegant way of incorporating model un-
certainty for trading off between exploration and exploitation. We propose an extension of model-
based Bayesian RL to continuous state spaces. The key feature of our approach is its search through
the space of model structures, thus adapting not only the model parameters but also the structure
itself to the problem at hand. We currently present algorithms and results for structures that are
discretizations of the state space, but we hope to extend this to more powerful representations.

The class of models we are working with are composed of a partitioning (also referred to as an
aggregation or discretization) of the state space, and a transition matrix which defines the probabil-
ities of transitioning between partitions. For simplicity, we assume a small set A of discrete actions
(although an extension to the continuous action case is also in the works), and we maintain a sep-
arate transition matrix for each action. We denote the partitioning by Ω, and the transition matrix
for action a by Θa. We also assume that the transition distribution is uniform within the next state
partition. Thus, we approximate the transition probabilities from state s to state s′ by

P(s′|s,a) =
1

Vol(ω(s′))
Θa(ω(s),ω(s′))

where Vol(ω(s′)) is the volume of ω(s′), the partition containing s′. The partitions in Ω are created
by splitting existing partitions, making a tree structure the most appropriate way of describing Ω.

State aggregation models come with several caveats. First, better discrimination between states
always comes at the cost of decreased generalization, and vice versa. Second, this class of models
will in most cases not contain the true transition model. Third, the probabilities of transitioning
between partitions are not in fact multinomial. Indeed, these probabilities depend on the distribution
of states inside a partition, which makes them have a non-tractable dependency on the history and
the action selection mechanism.

Bayesian learning actually enables us to get around some of these problems. The main reason for this
is that our model-based Bayesian RL algorithm causes the distribution over partitionings to change
over time in response to the observed data (this is also done heuristically in other state aggregation
work, such as Munos and Moore (1999)). Thus, the first issue could be handled by having good
generalization (large partitions) in the beginning, and then discretizing more as sufficient data is
available. The second and third issue should also be less problematic as the discretization becomes
finer.

For the technical implementation of these ideas, we draw inspiration from two existing papers:
Ross and Pineau (2008) and Chipman, George and McCulloch (1998). Ross and Pineau proposed a
Bayesian RL algorithm for factored MDPs, which allows them to handle finite MDPs with large state
spaces. Chipman, George and McCulloch describe a Bayesian approach to supervised learning that
uses tree-based state aggregation. In this paper, we only present an overview of our implementation,
and leave most of the details for a future lengthier publication.

Similarly to previous work, we break up the probability of a model as P(Ω,Θ) = P(Ω)P(Θ|Ω),
where Θ = {Θa|a ∈ A}. For the posterior, we use the same factorization, but additionally condition
on the history.
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Since there is an infinite number of possible discretizations, the distribution P(Ω) over the discretiz-
ing trees cannot be maintained explicitly, so an approximate, particle filter style approach is taken.
A set of trees is initially sampled from the prior (which gives more weight to smaller trees), and the
probabilities of these structures is maintained. When the likelihood of the maintained set of trees
falls below some threshold, a new set of trees is sampled using the well-known Metropolis-Hastings
algorithm, as described by Chipman et al. (1998). This requires that previous transitions be stored,
because we need to compute the likelihood of the data under different models.

The distribution over partition-to-partition transition models P(Θ|Ω) is represented as a Dirichlet
and maintained by updating counts. At several points in the algorithm (updating the probabilities of
the structures, computing the Metropolis-Hastings ratio) we need to marginalize over Θ. Fortunately,
this can be done in closed form.

To find the optimal action with respect to the posterior uncertainty in the model, we have to find
an approximation to the optimal policy in the resulting Bayes-adaptive MDP. One possibility for
approximating the optimal BAMDP solution that has shown good results is sample-based online
planning, as used for instance by Ross and Pineau (2008). They used a very simple planning strategy,
where the actions are sampled uniformly, but other more informed action selection methods have
also been proposed (e.g. Castro, 2007; Wang et al., 2005). Online methods, however, seemed to
have prohibitively large variance in our preliminary experiments, so we are also considering myopic
heuristics such as value of perfect information (Dearden et al., 1999) .

There are several existing Bayesian RL algorithms designed for continuous state spaces. Ross
et al. (2008) present a model-based Bayesian RL method for continuous-state, continuous-action
POMDPs; it requires, however, the transition model to be Gaussian. The Gaussian process temporal
difference work of Engel et al. (2005) can handle continuous state spaces by representing the value
function as a kernel-based Gaussian. Several extensions of non-bayesian exploration methods to
continuous state spaces have also been proposed (Kakade et al., 2003; Nouri and Littman, 2008).

We are currently empirically evaluating our method on continuous-state reinforcement learning
problems; in the near future, we intend to compare our on-line learning performance against some
of the methods mentioned in the previous paragraph.
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