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1. Introduction
Broadly speaking, there are two approaches to learning
value functions for reinforcement learning (RL): model-
free and model-based. Model-free approaches typically use
samples to learn a value function, while model-based ap-
proaches build a model of system dynamics from samples,
and the model is used to compute a value function. We
summarize recent work showing that the two approaches
are equivalent for two classes of closely related RL meth-
ods, one based on least-squares approximation and the
other kernelized linear approximation. We also briefly dis-
cuss a new insight about Bellman residual minimization
arising from kernelized RL.

2. Formal Framework and Notation
This work concerns uncontrolled Markov processes, re-
ferred to as Markov reward processes (MRPs): M =
(S, P, R, γ). Given a state si ∈ S, the probability of a tran-
sition to a state sj is given by Pij and results in an expected
reward of ri.

We are concerned with finding value functions V that map
each state si to the expected total γ-discounted reward for
the process. In particular, we would like to find or closely
approximate the solution to the Bellman equation:

V = R + γPV.

For any matrix, A, we use AT to indicate its transpose.

2.1. Linear Value Functions and Models

In cases where the value function cannot be represented ex-
actly, it is common to use some form of parametric value-
function approximation, such as a linear combination of
features or basis functions:

V̂ =
k

∑
i=1

wiφi,

where Φ = {φ1, . . . , φk} is a set of linearly independent

basis functions of the state. Expressing the weights w as a
column vector, we write V̂ = Φw.

We can alternatively use features Φ with linear function
approximation to predict rewards and next features. We
define the linear reward model R̂ as

R̂ = ΦwR.

We similarly define a linear model Φ̂′ on our expected next
feature values Φ′ = PΦ as

Φ̂′ = ΦWP.

The columns of Φ̂′ can be viewed as linear predictors for
the columns of Φ′, with the columns of the k × k matrix
WP containing the corresponding approximation weights.

3. Linear Fixed Point Methods and
Least-Squares Models

One group of related methods for finding a reasonable
value function approximation weight vector w given Φ
and a set of samples include linear TD (Sutton, 1988),
LSTD (Bradtke & Barto, 1996) and LSPE (Yu & Bertsekas,
2006). We refer to this family of methods as linear fixed-
point methods because they all solve for the fixed point

V̂ = ΦwΦ = Π(R + γΦ′wΦ),

where Π is the L2 projection operator into span(Φ). Solv-
ing for wΦ yields:

wΦ = (ΦTΦ− γΦTΦ′)−1ΦT R. (1)

The notion that linear fixed-point methods are implicitly
computing some sort of model has been recognized in vary-
ing degrees for several years. For example, Boyan (1999)
considered the intermediate calculations performed by
LSTD in some special cases, and interpreted parts of the
LSTD algorithm as computing a compressed model.

In recent work (Parr et al., 2008) we show that the linear
fixed-point solution for features Φ is exactly the solution to
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the linear model described by R̂ and Φ̂′ when these models
are obtained via least-squares regression, i.e., when wR =
(ΦTΦ)−1ΦT R and WP = (ΦTΦ)−1ΦTΦ′.

The Bellman equation for our approximate model has the
fixed point V̂ = Φw, where

w = (I − γWP)−1wR. (2)

This is the linear model solution. Expanding the expres-
sions wR and WP in Eq. (2) gives, with simple algebraic
manipulation, Eq. (1), completing the equivalence proof.

4. Kernelized Value Function Approximation
and Kernel-Based Models

A special case of linear function approximation occurs
when our features derive from a kernel. A kernel is a sym-
metric function k between two points, and a kernel ma-
trix, K, stores kernel values for all pairs in a dataset with
Kij = Kji = k(xi, xj).

If regularized least-squares regression is re-derived using
the kernel trick, we arrive at the dual (kernelized) form of
linear least-squares regression (Bishop, 2006),

y(x) = k(x)T (K + Σ)−1 t, (3)

where t represents the target values of the sampled points,
and k(x) is a column vector with elements ki(x) =
k(xi, x). Σ is a generic regularization term. Frequently
Σ = λI, but as in general Tikhonov regression, non-zero
off-diagonal terms are possible.

4.1. Equivalence of Kernelized Reinforcement
Learning Methods

Taylor and Parr (2009) have formulated a model-based RL
algorithm using linear transition and reward model approx-
imations derived from kernelized regression. The value
function resulting from these approximate models is

V̂(s) = k(s)T
[
(K + ΣR)− γ (K + ΣR) (K + ΣP)−1 K′

]−1
R,

(4)

with separate regularization terms ΣR and ΣP for the re-
ward model and transition model approximations. Analo-
gous to Φ′ in Section 2.1, K′ = PK is the matrix of next
kernel values.

For particular choices of regularization parameters ΣR and
ΣP, they show that the value function obtained by solving
the approximate model is identical to that of Kernelized
LSTD (Xu et al., 2005), and the means returned by Gaus-
sian Process Temporal Difference Learning (Engel et al.,
2005) and Gaussian Processes in Reinforcement Learning
(Rasmussen & Kuss, 2004).

5. Kernelized Value Function, Linear Fixed
Point, and Bellman Residual Minimization

In this section we compare the form of the kernelized
value function (Eq. (4)) with the linear fixed point solu-
tion (Eq. (1)) and the solution obtained by Bellman resid-
ual minimization (BRM). We show that, when using the
columns of a kernel matrix K as our feature set, both the
linear fixed point and BRM solutions are instances of the
kernelized value function.

The BRM solution is the approximate value function that
minimizes the Bellman residual R + γΦ′w−Φw. Mini-
mizing the Bellman residual in a least squares sense,

wBRM = argmin
w

∥∥R + γΦ′w−Φw
∥∥2

= ((Φ− γΦ′)T(Φ− γΦ′))−1(Φ− γΦ′)T R,

we can see immediately that the BRM solution is equiva-
lent to least-squares regression on target vector R with fea-
tures (Φ− γΦ′). Substituting K for Φ in the BRM solu-
tion, and solving for the value of one state only, we have

V̂(s) = k(s)T((K− γK′)T(K− γK′))−1(K− γK′)T R

= k(s)T(K− γK′)−1R,

which is Eq. (4) with ΣR = ΣP = 0. Note that the final
step is allowed because K−γK′ is square. The linear fixed
point solution with the substitution of K for Φ can similarly
be shown to reduce to Eq. (4) with no regularization.
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