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Introduction

We address the question of how networks of biologi-
cally plausible spiking neuron models can learn target
transformations of input-to-output signals encoded in
precisely timed patterns of spikes.

Gradient-based learning algorithms, like backpropa-
gation, successfully solve this problem for networks of
rate-based units. However, explicit evaluation of gradi-
ent in spiking networks is difficult due to their discon-
tinuous dynamics. Indirect approaches or special sim-
plifications must be assumed to deal with this problem
[3].

Here we introduce an online reinforcement learn-
ing algorithm, which consistently modifies all synaptic
weights in multi-layer or recurrent spiking neural net-
works without the requirement to calculate the gradi-
ent. We demonstrate that with this approach networks
can learn to reproduce target sequences of spikes in re-
sponse to the corresponding input patterns.

Algorithm

The algorithm is defined as follows. For any synap-
tic connection from neuroni to neuronj the synaptic
efficacywji(t) is updated according to the formula:

d
dt

wji(t) = α rj(t)Si(t), (1)

whereα is the learning rate,rj(t) is the reward signal
assigned to neuronj andSi(t) is the eligibility trace of
neuroni. We define the eligibility trace as:

Si(t) = a +

∫

∞

0

A exp(−s/τ)Si(t−s) ds, (2)

with the constant parametersa,A, τ ∈ R
+ and with

Si(t) being a spike train generated by neuroni. A spike
train is defined as:S(t) =

∑

f δ(t−tf ), wheretf is a
firing time,f =1, 2, ... is the label of the spike andδ(n)
is the Dirac function.

Distinct definitions of a reward function are used for
output and hidden neurons.

For each output unito a positive rewardro(t)=+1 is
assigned to its synaptic inputs at every timetd assumed

to be the target firing time for the neurono; a negative
rewardro(t)=−1 is applied whenever the neuron gen-
erates a spike; no reward is givenro(t)=0 at all other
times. Formally this can be expressed as:

ro(t) =
(

Sd
o (t) − So(t)

)

, (3)

whereSd
o (t) andSo(t) are the target and output spike

trains of neurono, respectively.
For every hidden neuronh the rewardrh(t) is the

sum of rewards assigned to the particular output neu-
rons, i.e.:

rh(t) =

n
∑

o=1

ro(t), (4)

wheren is the total number of output neurons in the
network.

The algorithm given by Eqs.(1-4) can be applied
both to excitatory and inhibitory connections provided
that inhibitory synapses are represented by negative
weight values.

In order to ensure that the activity of the output neu-
rons converges to the target patterns despite the con-
tinuous rearrangement of the synaptic inputs, the dy-
namics of weight changes in the output layer should be
much faster then in the hidden layer. This is achieved
by selectingα several times smaller for the hidden neu-
rons as compared to the output neurons.

Results

Typical results of learning are presented in Fig.1. A
network of leaky-integrate-and-fire neurons with an in-
put layer (200 inputs), a hidden layer (400 neurons) and
a single output neuron, is trained to reproduce a target
Poisson spike train in response to randomly generated
input signals (here we assume that the particular inputs
fire once at a fixed time chosen randomly from a uni-
form distribution between 0 and 200ms.).

Each network input is connected randomly to around
25% of neurons in the hidden layer and all hidden neu-
rons project on the output neuron. Around 20% of all
synaptic connections in the network are assumed in-
hibitory.



00.5

0 100 200

0 100 200

0

100

200

0 200 400 600

time, ms

learning epoch

e
rr

o
r

in
p

u
t

h
id

.n
.

o
u

t.
n

.
h

id
.n

.
o

u
t.

n
.

h
id

.n
.

o
u

t.
n

.
h

id
.n

.
o

u
t.

n
.

in
it
. 

a
c
ti
v
it
y

4
0

 l
.e

p
o

c
h

6
0

 l
.e

p
o

c
h

6
0

0
 l
.e

p
o

c
h

target

A

B

C

D

E

F

G

Figure 1:Illustration of the learning process. Spiking neural
network is trained to generate the target sequence of spikes
(F) in response to the given spatio-temporal input pattern (A).
Network activity (hid.n.) and network output (out.n) are il-
lustrated after selected learning epochs (B-E). (G) Learning
error is consistently decreased in the consecutive epochs to
reach the value close to 0 after around 300 steps.

Synaptic weights are initialized (according to a
Gaussian distribution) such that the inputs do not ini-
tially evoke activity in the hidden layer (Fig.1.B). This
is to demonstrate the ability of our algorithm to deal
with silent neurons (as opposite to the backprop- or
STDP-based algorithms).

The learning progress is illustrated after 40, 60 and
600 learning epochs (Fig.1.C-E, respectively). In the
consecutive graphs we observe a slowly increasing ac-
tivity in the hidden layer. However, only those hid-
den neurons start to fire which receive projections from
the inputs that are active shortly before the target firing
times. Consequently the neural activity in the hidden

layer increases only around the target firing times. This
activity gives rise to the spikes in the output neuron. As
the learning continues the output spikes move towards
the target times. Starting from around 300-th learning
epoch the target pattern is almost perfectly reproduced
at the network output with the spike-train correlation
equal to 0.95.

Discussion

The algorithm introduced here extends our previous
learning method, called ReSuMe, designed for sin-
gle spiking neurons (or single-layer spiking networks)
only [4, 5]. By enabling consistent modifications of all
synaptic weights in a network, the new algorithm im-
proves learning capability and memory capacity of the
network as compared to ReSuMe.

Our approach possesses also several advantages
over another, recently extensively explored, algorithm
known as reward-modulated spike-timing-dependent-
plasticity (RM-STDP) [1, 2].

That is, our algorithm solves the problem of train-
ing networks with silent neurons (as illustrated in the
results section); the definition of a reward signal pro-
posed here enables to effectively learn temporal se-
quences of spikes and ensures that the learning process
reaches a stable fixed point whenever the output spike
train matches the target pattern, which is not the case
for the RM-STDP models considered so far.

Possible directions for future work include imple-
mentation of the algorithm in the actor-critic architec-
ture or extension of the learning rules by additional
terms ensuring further improvement of the learning
performance.
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