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Working memory (WM) is critical for many tasks in everyday life. However,
the ability to maintain information in memory for brief periods of time is not
a given. During development, WM improves significantly, in both capacity and
maintenance time [1]. This improvement has been attributed to a variety of
factors, from the maturation of cortical tissue, to the development of better
strategies to encode and store information, e.g. chunking. Here, we ask if WM
can develop by learning to perform tasks that require some temporary stor-
age of information. We address this question in the context of general-purpose
recurrent neural networks. Specifically, we ask if an initially unstructured neu-
ral network can acquire WM properties while learning to perform a delayed
response task. Unlike classical WM models [2, 3, 4], we make no a priori as-
sumptions on stimulus encoding, leaving the network to discover an appropriate
respresentation by reward-dependent learning.

The network consists of linear threshold neurons with sparse recurrent con-
nectivity [5, 6]. Stimulus specific inputs are delivered to small non-overlapping
subpopulations within the network, with an additional nonspecific background
input. The output layer reads the activity of excitatory units and, through a
winner-take-all mechanism, selects the action to be taken, which yields a cor-
responding reward. The connectivity is modified through reward-dependent
STDP [7], with an additional weight normalization. Network activity is stabi-
lized by an intrinsic plasticity rule regulating the neuron’s spike threshold to
maintain a certain mean average firing rate. During the delayed response task,
a stimulus, selected at random from a set of K, is presented to the network,
leading to a one time step activation of the corresponding subpopulation within
the recurrent network. After a delay —either fixed for all trials, or selected in-
dependently from a uniform distribution between 1 and a maximum Dmax—, a
cue is presented, indicating that at the next time step the action will be selected
and the corresponding reward (±1 for correct and incorrect, respectively) will
be delivered.

Our network is able to learn to correctly perform this task. Performance
is influenced by the task difficulty, being better for fixed delay and decreasing
with delay size. More interestingly, neurons within the recurrent network ac-
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quire stimulus specificity, as reported in various WM experiments. Additionally,
neurons respond to inputs in a time-dependent way, suggesting that stimulus
identity is encoded in a neuronal trajectory [8]. Such time-dependent responses
have been recently discovered in various neurophysiological experiments (see [9]
for list), but cannot be accounted for by traditional WM models, based on re-
current networks with attractor dynamics. Furthermore, the type of trajectory
used varies for the fixed and variable delay task, indicating that the encoding
of the same stimulus is task specific.

Our results suggest that reward-dependent learning can shape cortical con-
nectivity to build a working memory. Additionally, as task demands influence
the way information is represented within the system, our findings raise interest-
ing questions related to neural coding. It is a challenge for future work to further
investigate the context in which different types of encoding may arise within a
general purpose recurrent network. Lastly, our network’s performance is sig-
nificantly higher than that of a similarly constructed liquid state machine [10].
From a more general computational perspective, this indicates that reward-
dependent learning may be used for enhancing the computational abilities of
recurrent neural networks.
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