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The selection of optimal portfolios is a central problem of great interest in quantitative finance, one
that still defies complete solution. [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11]. A drawback of the standard frame-
work formulated by Markowitz [1] is that only one period is used in the evaluation of the portfolio
performance. In fact, no dynamics are explicitly considered. Like in many other financial planning
problems, the potential improvements of modifying the portfolio composition should be weighed
against the costs of the reallocation of capital, taxes, market impact, and other state-dependent fac-
tors. The performance of an investment depends on a sequence of portfolio rebalancing decisions
over several periods. This problem has been addressed using different techniques, such as dynamic
programming [2, 5] stochastic network programming [3], tabu search [4], reinforcement learning
[7], sequence prediction [10], online learning [11], and Monte Carlo methods [8, 9].

In this work, we develop a recurrent reinforcement learning (RRL) system that directly induces
portfolio management policies from time series of asset prices and indicators, while accounting for
transaction costs. The RRL approach learns a direct mapping from indicator series to portfolio
weights, bypassing the need to explicitly model the time series of price returns. The resulting poli-
cies dynamically optimize the portfolio Sharpe ratio, while incorporating changing conditions and
transaction costs. A key problem with many portfolio optimization methods, including Markowitz,
is discovering ”corner solutions” with weight concentrated on just a few assets. In a dynamic con-
text, naive portfolio algorithms can exhibit switching behavior, particularly when transaction costs
are ignored. We extend the RRL approach to produce better diversified portfolios and smoother
asset allocations over time. The solutions proposed are to include realistic transaction costs and to
shrink portfolio weights toward the prior portfolio.

The architecture of the learning system is depicted in Figure 1. The portfolio weights predicted
by the policy are a convex combination of F̃n, the composition of the portfolio at t−n , prior to re-
balancing, and F(S)

n (w), the output of a softmax network whose inputs are a constant bias term,
the information set, In (either lagged information from the time series of asset returns or external
economic and financial indices) and the current portfolio weights F̃n:

Fn(λ,w) = λF̃n +(1−λ)F(S)
n (w) (1)

The relative importance of these two terms in the final output is controlled by a hyperparameter
λ ∈ [0,1]. For λ = 0, the final prediction is directly the output of the softmax network. In the
absence of transaction costs, a new portfolio can be created at no expense. In this case, the currently
held portfolio need not be used as a reference, and λ = 0 should be used. If transaction costs are non-
zero, it is necessary to ensure that the expected return from dynamically managing the investments
outweighs the cost of modifying the composition of the portfolio. The costs are deterministic and
can be calculated once the new makeup of the portfolio is established. By contrast, the returns
expected from the investment are uncertain. If they are overestimated (e.g. when there is overfitting)
the costs will dominate and the dynamic management strategy seeking to maximize the returns by
rebalancing will have a poor performance. A value λ > 0 causes the composition of the portfolio to
vary smoothly, which should lead to improved performance in the presence of transaction costs.

The parameters of the portfolio management system are learned via RRL by either directly maxi-
mizing the wealth accumulated over the training period or by optimizing an exponentially smoothed
Sharpe ratio, while taking into account transaction costs. The training algorithm is a variant of gra-
dient ascent with learning parameter ρ extended to take into account the recurrent terms in (1) (see
[6] for further details). The hyperparameters of the learning system (ρ, η, λ) can be determined by
either holdout validation or cross-validation.
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Figure 1: Architecture for the reinforcement learning system.
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Figure 2: Evolution of portfolio weights for the
market portfolio (top) and for optimal investment
policy discovered by the reinforcement learning
systems for different transaction costs (0%, 1%
and 3% from the top down).

The performance of the reinforcement learning
system is assessed on real market data and com-
pared to the market portfolio (optimal if the
market were ideally efficient) and to the tan-
gency portfolio computed using the Markowitz
framework portfolio, which is optimal in terms
of the Sharpe ratio, assuming zero transaction
costs. The experiments are carried out using
the MSCI International Equity Indices (gross
level) that measure the performance of differ-
ent economic regions (indices for the Pacific,
North America and Europe) and of the global
market (the World index) [12].

From the results obtained (see Figure 2), sev-
eral important observations can be made. As
anticipated, the policy learned in the absence
of transaction costs involves a large amount of
portfolio rebalancing. The switching observed
for the portfolio weights is clearly undesirable
in real markets, where transaction costs make
this type of behavior suboptimal. By contrast,
the policies learned by the RRL system when
transaction costs are considered to be smoother
and require much less rebalancing. Further-
more, the portfolios selected outperform the market portfolio (except for large transaction costs
& 5%), and are well-diversified, which is in agreement with financial good practices. In conclusion,
the use of the current portfolio composition as a reference in the reinforcement learning architecture
considered in Fig. 1 is crucial to the identification of robust investment policies in the presence of
transaction costs.
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