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1 Introduction

We propose a reward-modulated synaptic learning rule for spiking neurons based and demonstrate its perfor-
mance on a learning task in continuous space inspired by the Morris Water maze. The synaptic update rule
modifies the release probability of synpatic transmission and depends on the timing of presynaptic spike arrival,
postsynaptic action potentials, as well as the membrane potential of the postsynaptic neuron. The rule is imple-
mented in a population of spiking neurons using a network architecture that combines feedforward input with
lateral connections. States are represented as spike trains of poisson neurons with overlapping receptive fields.
Actions are represented by a population of hypothetical action cells whose activity is read out at theta frequency.
We show that the model can learn the Morris watermaze task within 10-15 trials, consistent with experiments.

Our approach can be classified as a policy gradient method similar to the earlier work of [1, 2, 3], but goes
beyond these earlier studies. The resulting synaptic update rules can be formulated as a differential equation in
continuous time that has the form of a three-factor rule

dwij

dt
(t) = α(wij) R eij(t) (1)

eij(t) =

∫
∞

0

γ(t − t′) f1(prej(t
′))f2(posti(t

′)) dt′ (2)

The term eij , called eligibility trace, picks up the correlations between pre- and postsynaptic activity just as
in a Hebbian learning rule and convolves these with a low-pass filter γ. However, the final weight change is
implemented only in the presence of a reward signal R(t). In contrast to earlier work of [1] but similar to [2, 4, 3]
our approach takes into account spiking neurons with refractoriness and includes examples such as the standard
integrate-and-fire model. In contrast to most earlier work [2, 3, 5], our learning rule is applied to a network of
neurons that combines feed-forward input with lateral interactions. Our novel learning rule works significantly
faster and more reliable than earlier policy gradient rules for spiking neurons [2, 3].

2 Results

We perform simulations of a model rat navigating in a square maze of 1 m2, with a constant speed of 20cm/s.
The rat performs a number of trials, with each trial consisting of an attempt to find the goal within a time limit
of 90 seconds. At the beginning of each trial, the rat is placed near one of the walls of the maze. Actions are
chosen at theta frequency (every 200ms). The rewarded position (target) is at a random position near the central
region of the maze and remains fixed at the same position within a set of trials whereas the initial position of
the rat varies, as in the experimental paradigm [6, 7, 8]. Positive reward is only given if the rat reaches its target
and negative reward if it hits the wall. Given the rat’s location, the direction of the next move is decided by the
population vector of the action cells. We use the population vector of the synaptic strength of the feedforward
connections from a given place cell to visualize the direction of motion starting at that location. The combination
of vectors gives a flow map, corresponding to the navigation map of the rat, see Figure 1 . We find that already
after 10 trials, a rough strategy for the Morris watermaze task. The performance of the rat is measured by the
time it takes to reach the target, corresponding to the escape latency in the experimental literature [6, 7, 8], see
Figure 2. The performance is similar to that seen in experimental data [6] and previous models [9, 10].
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Figure 1: Navigation map of the rat after A:1, B:10, C:50 and D:100 trials visualized in the water maze by a
set of direction vectors. At each grid point (defined by the center of a place cell j) in the graph, we plot the
stochastic release probability qij for fixed j in the form of a population vector denoting the direction the animal
would most likely take at this location. The circle marks the position of the hidden platform.
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Figure 2: Water Maze task, average performance for 10 sets of trials. The number of steps it takes to reach the
platform decreases with the number of trials, indicating that the simulated rat is learning the location of the
platform. Error bars show standard error. Place cells are located every 5 cm, with a gaussian receptive field of
σ=8 cm, and maximum firing rate 120Hz. Release probabilities are low and upper bounded by the values 0.15
and 1.
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