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Several papers have examined the conditions under which the behavioral predictions of Mean-Variance 
(MV) and Expected Utility (EU) models coincide; focusing on the shape of the utility function or subtle 
measures  of  risk  such  as  semi-variance.   There  is,  however,  a  fundamental  difference  in  the  two 
approaches: EU requires the explicit learning of probabilities using, for instance, Bayesian updating, with 
the  drawback that,  as the  number of state probabilities  increases, accurate estimation of probabilities 
becomes impossible. This learning limitation does not hold for the MV optimizer, who can simply learn 
the mean and variance using a reinforcement learning algorithm. We conjecture that this fundamental 
difference has important behavioral effects which we have explored with a novel experimental paradigm.

In this paradigm, the outcome of each gamble is based on random drawing of a ball from a bin. Balls 
within each bin are distinguished by color. There may be many balls of the same color, but participants do 
not know how many. Like in standard lotteries, each ball is labeled with a number. This number is the 
same for balls of the same color and determines how much participants earn when a ball is drawn. For 
instance, if the red balls are labeled "5", he/she make 5 francs every time a red ball is drawn. Whenever 
we change the bin, we give the opportunity to try it out, before making decision whether to buy into the 
gamble or not for a posted price. If they decide to play, the outcome minus the price (net payoff) is added 
to their play money. Participants can sample as much as they like. The crucial feature of the task is that 
occasionally, we may change the labels without changing the composition of the bin (number of balls of 
each color).

States (as determined by the number of colors) and payoff variance are changed independently from one 
bin to the other. The number of states was fixed at 2, 3, 5, or 10. The payoff standard deviation was fixed 
at 4, 8, or 12. We hypothesized that as the number of states increases and because this increases the 
number of probabilities to estimate, an EU maximizer will need to sample more in order the learn the 
value of the bin. This is not the case for a MV optimizer, who will conversely sample more if the payoff 
variance increases, in order to get an accurate estimate of the mean.  In addition, changes in labels require 
the MV optimizer to resample the bin because he/she did not keep track of the probabilities, as opposed to 
the EU decision-maker.

We recruited twenty-seven subjects (10 women, 17 men). At the end of the experiment, subjects received 
1/10 of their net play money in real currency.
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The first  main result is that subjects sampled with high probability (greater than 50%) when we only 
changed the labels (payoffs) of the balls in the bin, keeping the composition of the bin the same. This is 
strong evidence that subjects – at least in part – relied on MV analysis.

Next, we analyzed sampling duration (length was set equal to 0 if no sampling). Participants reduced the 
length of sampling after (only) payoffs changed but increased it when the number of states increased, 
consistent with the EU approach. There was a significant interaction effect of the payoff change (only) 
and the number of states: the difference between the length of sampling when a new bin was presented 
against when only payoffs changed decreased with the number of states. This suggested an increased 
reliance on MV analysis. In addition and consistent with MV computation, the length of sampling became 
sensitive to standard deviation when state complexity increased.

Altogether, the results support the notion that subjects mix the EU approach (they increase sampling as 
state complexity increases) and the MV approach (they re-sample). But when state complexity increases, 
MV analysis gains weight. Indeed, they re-sample more and the re-sampling length becomes sensitive to 
payoff variance.

Turning to purchase decisions, we analyzed reaction times (times needed to decide whether to buy a 
gamble for a certain price). These were expected to be shorter when subjects relied more on MV analysis. 
Conversely, we expected reaction times to increase with state complexity to the extent that subjects relied 
on EU analysis. We know that subjects did rely on EU, although less so when the number of states was 
high. As such, we expected reaction times to increase with the number of states, but at a decreasing rate, 
whereby reaction times may eventually decrease for high number of states. Results were consistent with 
this  prediction:  reaction  time  increased  significantly  from 2,  3,  and  5  states,  but  remained  constant 
between 5 and 10 states.

Interestingly, the biggest shift from EU to MV ``thinking'' occurred when increasing the number of states 
from 5 to 10. We conjecture that this is related to the effective limit to working memory in the human 
brain, which is said to be able to hold about seven elements. Below seven elements (e.g., when 5 state 
probabilities  need  to  be  accounted  for),  EU is  perfectly  manageable.  Beyond seven,  however,  other 
protocol needs to be followed. We conjecture that humans appeal to mean-variance analysis to overcome 
inherent limitations in their working memory.

For future research and in order to further support the hypothesis that humans rely more on MV and hence 
reinforcement learning when the number of states is high, it will be necessary to look at brain activation 
when participants are sampling from a lottery with low versus high number of states. For low number of 
states, we expect to observe BOLD signals that covary with probability updating (derived from  Bayes' 
law and Dirichlet priors). For high number of states, we expect to observe BOLD signals that covary with 
reward and risk prediction errors (derived from a reinforcement learning algorithm).

2


