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Focus

@ Approximate solution of bxed point problemx = T(x) by solving
x =1 T(x)
! is projection on a subspace of basis functions (with respect to some
weighted Euclidean norm). A special case of Galerkin approximation.

()

PT(x)=xt="r!

SubspaceS = {! r |r" #s}

o Traditional TD methods apply to BellmanOs equatiorx = T(x).
@ Use Monte-Carlo simulation, which plays an unconventional role.
@ An oversimplibed view:

TD methods ! DP with subspace approximation + Simulation

@ A more general/extreme view:
TD methods ! Galerkin Approximation + Monte-Carlo Linear Algebra



Monte-Carlo Linear Algebra

P
@ Key idea: Compute sums ., a by simulation when n is large.

@ Complexity advantage: Running time is independent of the number n of
terms in the sum, only their Ovariance".

@ Introduce a sampling distribution ! and write
x ox & C
a = i TI = E {a}
i=1 i=1 !
where the random variable & has distribution
! "

P é:fli =1, i=1,...n
.

@ We Oinvent! to convert a Odeterministic" problem to a
stochastic/simulation problem.



Summary of this Talk

Starting point: Approximate DP/BellmanQOs equation/policy evaluation
T(x)= Ax+ b, A:n!'n b"#"

where A : encodes the Markov chain structure, b : cost vector.

x =1 T(x) is solved by TD methods [TD(! ), LSTD(! ), LSPE(! )].

We extend TD methods to general (nonDP) mapping T and general
projection on a convex set (rather than a subspace).

We develop as special cases new TD methods for DP with improved
overhead (no matrix inversion).

We weaken the assumptions under which old methods work (allow
linearly dependent basis functions).
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Outline

o Projected Equation Approximation
@ The Approximate DP Context
@ Characteristics of the General Projected Equation Context

e Unibed Framework for Projected Equations
@ Equivalence of Projected Equations and Special Type of VI
@ |terative Methods for VI
@ lterative Methods for Projected Equations
@ Convergence without Full Rank Assumption

e Simulation-Based Versions
@ Simulation Framework
@ LSTD-Type Methods
@ LSPE-Type Methods
@ Scale-Free Convergence Rate Properties



Projected Equation Approximation
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DP Context/Policy Evaluation

@ Markovian Decision Problems (MDP)
@ n states, transition probabilities depending on control
@ Policy iteration method; we focus on single policy evaluation

@ BellmanOs equation:
XxX=Ax+Db
where
o b: cost vector

@ A has transition structure, e.g.

A = P for discounted problems; ! : discount factor
A = P for average cost problems



Projected Equation Approximation
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Approximate Policy Evaluation

@ Approximation within subspace S= {! r |r € %}

x~!r, I is a matrix with basis functions/features as columns

@ Projected Bellman equation:

'r="(C Al r+ b)

@ Long history, starting with TD(! ) (Sutton, 1988)

@ Least squares methods (LSTD, LSPE) seem more popular currently



Projected Equation Approximation
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Equation Approximation - Least Squares Policy Evaluation (LSTD)

@ Dates to 1996 (Bradtke and Barto), with A-extension by Boyan (2002)
@ |dea: Solve a simulation-based approximation of the projected equation
o The projected Bellman equation is written as Cr = d
o LSTD solves @r = &, where

érc, &1 d
are obtained using simulation
@ Does not need the contraction property of DP problems
@ Multistep version: LSTD()), which is LSTD applied to the mapping

TOX) = !/\)Z)\ T x) = Ax + b)),

where

A = (11 X)) AT b®) = XA
k=0 k=0



Projected Equation Approximation
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Iterative Methods

@ Projected Value Iteration (PVI)
@ Value lteration => Projection => Value lteration => Projection ....

T(®re)

Projection
onS

Trss =" T( 1)

SubspaceS

' =" T( )

@ Key fact: " T is a contraction with respect to the steady-state distribution
norm (states are weighted by the steady-state distribution of the Markov
chain).



Projected Equation Approximation
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Least Squares Policy Evaluation (LSPE)

]

i

i LSPE Noisy

| Projection Projection

{ ons ons

|

i

Dl = T(R)

0
¢ In 1 ="T( ]

StbspaceS ' StbspaceS Pron ="T(r) +h

@ A simulation-based approximation to PVI
@ Dates to 1996 (Bertsekas and loffe); also in the Bertsekas and Tsitsiklis
(1996) book. Conceptually:
LSPE: ! .y = "l T& rt; + €, €t is simulation noise with e ! 0

PVI

@ No stepsize unlike TD())

@ Allows for a favorable initial guess ro; may be an advantage in
optimistic/few samples approximate policy iteration

@ Convergence rate: LSPE Otracks" LSTD, but differs in early stages



Projected Equation Approximation
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Advantages of Projected Equation Methods in DP

When using simulation:

@ All operations are done in low-dimension
@ The high-dimensional vector x need not be stored

@ There is a projection norm (the distribution norm) that induces
contraction of ! T and a priori error bounds

@ The projection norm is implemented in simulation - need not be known a
priori



Projected Equation Approximation
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General/NonDP Projected Equation Framework

@ We consider general projected equations x =! T(x) as approximations
to general (nonDP) bxed point equationsx = T(X).

@ Also more general Euclidean projections (on a convex subset of a
subspace S).

@ In this talk we focus primarily on linear bxed point problems
T(x)= Ax+ b

and projection on a (full) subspace.

@ Difference from DP: No Markov chain, no contraction guarantee
@ Methods:

o LSTD analog (does not require ! A to be a contraction)

@ LSPE analog and scaled versions/extensions (requires ! A to be a
contraction)

e TD(!) analog (requires ! A to be a contraction)

@ Advantages maintained: All operations are done in low-dimension and
the high-dimensional vector x need not be stored



Unibed Framework for Projected Equations

Outline

e Unibed Framework for Projected Equations
@ Equivalence of Projected Equations and Special Type of VI
@ |terative Methods for VI
@ lterative Methods for Projected Equations
@ Convergence without Full Rank Assumption



Unibed Framework for Projected Equations
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Connection of Projected Equations and Variational Inequalities

@ Consider
x =1 T(x)
where ! is the projection operation onto a closed convex subset 8 of the
subspace S (w/ respect to weighted norm 'a!, ; " : positive debnite).
T(x*)

TT(x!') = x! = or!

SubspaceS = {! r |r" #s}

@ From the properties of projection,

T Uxt Xy # 0, $x %8
@ This is a variational inequality: Find x' %8 such that
fx')(x" x')#0,  $x %8,

where f(x) =" x" T(x)«



Unibed Framework for Projected Equations
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Equivalence Conclusion

@ We have two equivalent problems:
@ The projected equation
x =1 T(x)
where ! is projection with respectto!a!- onconvex 8" S
@ The special form VI
f@Er)#(r#r')$0,  %&R,
where B
f(x)=" (x# T(x)), R={r|#r&8}
@ Every projected equation x =! T(x) is obtained as follows:
o Start with a suitable VI
f(x')Y'(x# x')$ 0, %x & X,
where X is convex
o Restrict the solution to be of the form x =# r

@ Some special cases:
e X ="'0 Vi<==>f(x')= 0(e.g., BelmanOs equation in DP)
o f(x)= ( H(x): VI<==>Minimize H(x) over x & X (e.g., approximate LP)
o Cooperative and zero-sum games, etc.



Unibed Framework for Projected Equations
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Iterative Methods for VI

Consider the VI
fo ) (rt r'y" 0,  #r$R,

where R is a closed convex set.
May be solved by iterative methods of the form

0 w1, v +
f+1= Ppr k! I'D"71 (1 1),

where ! is a positive stepsize, D is a positive debnite symmetric gatrix,
and Pp r[§ denotes projection on R with respect to norm %% = r'Dr.

Using a classical result: Assume " T is a contraction and ! has linearly
independent columns. Then for ! sufbciently small, the method
converges to the unique solution r' .

Special result: (Bertsekas and Gafni 1982) Assume " T is a contraction
and R is polyhedral. Then for ! sufbciently small, the method converges
at a linear rate to some solution r' (even without the linear
independence assumptionon ! ).




Unibed Framework for Projected Equations
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Iterative Methods for Projected Linear Equations

@ Assume that! T is a contraction with respect to ! 4! = and has bxed point

X*
@ For simplicity, also assume no constraint and T is linear:

T(x)= Ax+ b

@ The equivalent VIis" 'f(" r)= Oor
VRO =TT TN = RO T AT b)= 0,
or
Cr=d, (LSTD equation in DP)
with
c=""#1" A", d=""#b

@ The iterative method becomes
=" D HCrc " d)

and D just scales the direction.



Unibed Framework for Projected Equations
o0

Convergence Properties

N(! ) = N(C)
A

ro+ D$1Ra(C)
Limit of
{r}
ro &
R#={r|!r=x#}
0 Ral )= N(! )"

@ For! sufbciently smallthe iterative method
Ne1=rn! !'D' Y(Cr! d), C=0=Z(! A)d, d=0o=b

converges at a linear rate:

e Tothe unique r# with ! r¥ = x# if I has linearly independent columns.

e To some r¥ in the solution set R* = {r | ! r = x#} along a linear manifold
that passes through ry if | does not have linearly independent columns.

e To the unique projection & of ry onto R¥ if D = |.

@ The high-dimensional sequence ®r, converges to x*.



Unibed Framework for Projected Equations
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Special Cases

@ Projected Value Iteration/Jacobi method
D=! "1, 11 (0,1],
er=n" 1™ "HCr" d)

o Requires that! has full rank.
e Important advantage: Known stepsize range for convergence.
e For! = 1itbecomes
Xer1 =" T(X)
where x, =! 1.

o For approximate DP it is equivalent to projected value iteration.
o Itis scale-free: {xx} does not depend on! (only on S).

@ Simple iteration (D = 1)
fke1 = " ! (Crk " d)

Converges for ! sufbciently small.
@ Another low-overhead choice:

D: a diagonal approximation to ! *"!

Converges for ! sufbciently small, and usually close to 1.



Simulation-Based Versions

Outline

e Simulation-Based Versions
@ Simulation Framework
@ LSTD-Type Methods
@ LSPE-Type Methods
@ Scale-Free Convergence Rate Properties



Simulation-Based Versions
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Simulation-Based Versions

@ For
c=!'"(It A, d=!"b
with " :  diagonal, consider the projected equation
Cr=d,

and the iteration )
fe1= ! 1D H(Cre! d)

@ Use k samples to compute simulation-based approximations
Ck n C, dk n d

@ Approximate the projected equation by
Ckr = dy, (LSTD-type method)
and approximate the iterative method with
Ner = M ! 1D H(Cre ! di), (Scaled LSPE-type method)

where
Dc# D>0



Simulation-Based Versions
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Simulation by Row and Column Sampling

—_—
Row Sampling According to !

Column Sampling
According to P

Row sampling: Generate sequence {i, i1, ...} according to ¢ (the
diagonal of ! ), i.e., relative frequency ofueach row i is &

Column sampling: Generate sequence (io, jo), (i1,]j1),... according to
some transition probability matrix P with

P > 0 if ajj E O,

i.e., for each i, the relative frequency of (i, j) is pj
Row sampling may be done using a Markov chain with transition matrix
Q (unrelated to P)

Row sampling may also be done without a Markov chain - just sample
rows according to some known distribution £ (e.g., a uniform)



Simulation-Based Versions
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Equation Approximation (LSTD-Type) Method

@ Approximation of C and d by simulation:
a |
C=t1 "(1-A) ~ Ce= —— “ (i) 1 (i) — (jt)(;'
- . k+ 1t=0- - pi!jt. ’
d=1 b~ de= 2 g
=1 ~ k—k+1t:0.(|t) it

We have by law of large numbers Cx — C, dx — d.
Equation approximation: Solve the equation Cxr = dy in place of Cr = d.
If I has full rank, Cy is invertible for large k.

The method is scale-free with respect to features: The high-dimensional
sequence ! C; dy does not depend on'! (only on the subspace S).



Simulation-Based Versions
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Iterative (Scaled LSPE-Type) Method

@ Simulation-based iteration

k+1 = Ik [ DL 1(Ckrk ! dk)

where
Dk" D>0
@ Several choices for Dy:

o Analog of projected value iteration (works with ! = 1):

L G

Dy = HONOF

k+1 =0

orfor# > 0, |
D = [ X

- #] + wiym [
K K+ 1 o (ie)" (i)

@ Version with diagonal approximation to Dy above
@ Simple iteration Dy = |



Simulation-Based Versions
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Scale-Free Rate of Convergence

@ The choice of D, ! , and! affect substantially the convergence rate of
the deterministic iteration

fe1= n! 1D HCre ! d)

@ The choices of Dy, ! , and! DO NOT affect the convergence rate of the
simulation-based version

eer = M ! 1Dy Y(Cir ! dk)

as long as the method converges.



Simulation-Based Versions
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Justibcation - Two-Time Scale Proof

@ Reason: The deterministic iteration
w1 = ne! 1D HCr ! d)
converges fast relative to the speed of the simulation.
@ The simulation-based version
fee1 = M ! 1D Y(Cure ! dk)
OseesDy, Ci, and di as essentially constant.”

@ For any Dy and !, the sequence {! r,} Otracks" (with prob. 1) the OLDTD"
sequence ! Cf< di which is scale-free and does not depend on ! .



Simulation-Based Versions
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Relation to TD(! )

@ If in the simple method (Dx = 1) we use a single sample approximation to
Cx and d:
a . G
C=1(ik) ! (i) p—" () . d= ()b

Ik

we obtain TD(0) (generalized for nonDP fixed point problems).

@ |t takes the form
et = M ! "k(Crre ! odk)

where "« must be diminishing for convergence (to “average” the
simulation noise), and

Cyri ! dk =1 (Ik) é(the TD)
@ An extension with direction scaling (Choi and VanRoy, 2006)

fkeq = e ! "kD; 1(Ckrk! dk)

@ If C¢ and dx are approximations to C!') and d*?, we obtain (extensions
of) TD(#).



Simulation-Based Versions
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Rate of Convergence of Low-Dimensional Sequences {ry}

For any Dy and ! :

The low-dimensional scaled LSPE-type iterates track the LSTD-type iterates.

5
] T 5
I5F] 4
— Limit
1100 ey =! C;gll .1 )
By D=1 T
115 ~— —f : D=dag( ™) 1
— - T :D=11=01
! 1 1 1 1 1 1 1 1 1

20
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
k



Simulation-Based Versions
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Rate of Convergence of High-Dimensional Sequences {! r¢}

For any Dy, !, and feature representation of S:

The high-dimensional scaled LSPE-type iterates track the high-dimensional
LSTD-type iterates (which do not depend on feature scaling).
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Concluding Remarks re NonDP Problems

@ TD methods can be naturally extended to solve more general (nonDP)
problems with basis function approximation.

@ This leads to a Monte-Carlo Galerkin approximation methodology. A vast
area of applications, e.g., operator equations, PDEs, inverse problems,
boundary-value problems, regression, optimization, etc.

@ The main advantage is solving (approximately) large-dimensional
problems with low-order calculations.

@ Unibcation through a connection with VIs.
@ The overall approach is simple:

e Start with a VI in high-dimension x (e.g., linear equation, bxed point problem,
regression, optimization, game problem, etc)

e Do basis function approximation x ! ! r

o Pick a deterministic (direct or iterative) method for the resulting
low-dimension VI

@ Write it in terms of inner products/expected values

o Approximate the expected values by simulation

@ Important issues: Clever implementation, convergence analysis, efpcient
simulation, variance reduction, constraint sampling and/or aggregation.



Simulation-Based Versions
000000@

Concluding Remarks re DP

@ New iterative TD methods (scaled LSPE) have been obtained.

@ Their rate of convergence is scale-free (does not depend on direction
scaling matrix D, stepsize ! , and feature matrix ! ) B they all track the
(scale-free) sequence generated by LSTD.

@ With diagonal scaling the overhead per iteration is improved over
LSTD/LSPE (no matrix inversion).

@ For convergence and rate of convergence the full rank assumption on !
is immaterial.

e TD(!) will converge to the unique projection of the starting weights ry on the
manifold of solutions.
@ Scaled LSPE will converge to some (random) solution.



