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Focus

Approximate solution of Þxed point problemx = T (x) by solving

x = ! T (x)

! is projection on a subspace of basis functions (with respect to some
weighted Euclidean norm). A special case of Galerkin approximation.

x − x! x! x! − T(x! ) T(x! )

SubspaceS Set öS

1

x ! x! x! x! ! T(x! ) T(x! ) x! = ! r !

SubspaceS = { ! r | r " # s} Set öS

1

x ! x! x! x! ! T(x! ) T(x! ) ! T(x! ) = x! = " r !

SubspaceS = {" r | r " # s} Set öS

1

Traditional TD methods apply to BellmanÕs equationx = T (x).
Use Monte-Carlo simulation, which plays an unconventional role.
An oversimpliÞed view:

TD methods ! DP with subspace approximation + Simulation

A more general/extreme view:

TD methods ! Galerkin Approximation + Monte-Carlo Linear Algebra
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Monte-Carlo Linear Algebra

Key idea: Compute sums
P n

i= 1 ai by simulation when n is large.

Complexity advantage: Running time is independent of the number n of
terms in the sum, only their Òvariance".

Introduce a sampling distribution ! and write

nX

i= 1

ai =
nX

i= 1

! i

ã
ai

! i

Ç
= E! { öa}

where the random variable öa has distribution

P
!

öa =
ai

! i

"
= ! i , i = 1, . . . , n

We Òinvent"! to convert a Òdeterministic" problem to a
stochastic/simulation problem.
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Summary of this Talk

Starting point: Approximate DP/BellmanÕs equation/policy evaluation

T (x) = Ax + b, A : n ! n, b " # n

where A : encodes the Markov chain structure, b : cost vector.

x = ! T (x) is solved by TD methods [TD(! ), LSTD(! ), LSPE(! )].

We extend TD methods to general (nonDP) mapping T and general
projection on a convex set (rather than a subspace).

We develop as special cases new TD methods for DP with improved
overhead (no matrix inversion).

We weaken the assumptions under which old methods work (allow
linearly dependent basis functions).
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DP Context/Policy Evaluation

Markovian Decision Problems (MDP)

n states, transition probabilities depending on control

Policy iteration method; we focus on single policy evaluation

BellmanÕs equation:
x = Ax + b

where
b: cost vector
A has transition structure, e.g.

A = ! P for discounted problems; ! : discount factor
A = P for average cost problems
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Approximate Policy Evaluation

Approximation within subspace S = {! r | r ∈ "s}

x ≈ ! r , ! is a matrix with basis functions/features as columns

Projected Bellman equation:

! r = "( A! r + b)

Long history, starting with TD(! ) (Sutton, 1988)

Least squares methods (LSTD, LSPE) seem more popular currently
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Equation Approximation - Least Squares Policy Evaluation (LSTD)

Dates to 1996 (Bradtke and Barto), with λ-extension by Boyan (2002)
Idea: Solve a simulation-based approximation of the projected equation

The projected Bellman equation is written as Cr = d
LSTD solves öCr = öd, where

öC ! C, öd ! d

are obtained using simulation

Does not need the contraction property of DP problems

Multistep version: LSTD(λ), which is LSTD applied to the mapping

T (! )(x) = (1 ! λ)
!X

k= 0

λk T k+ 1(x) = A(! )x + b(! ) ,

where

A(! ) = (1 ! λ)
!X

k= 0

λk Ak+ 1, b(! ) =
!X

k= 0

λk Ak b
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Iterative Methods

Projected Value Iteration (PVI)

Value Iteration => Projection => Value Iteration => Projection ....

SubspaceS

0

Projection
on S

! r t

T(Φr t )

! r t +1 = " T(! r t )

! rt+ 1 = " T (! rt )

Key fact: " T is a contraction with respect to the steady-state distribution
norm (states are weighted by the steady-state distribution of the Markov
chain).
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Least Squares Policy Evaluation (LSPE)

SubspaceS

0

! rt

T (! rt )

SubspaceS

0

Projection
on S

! r t

T(! r t )

! r t +1 = " T(! r t )

! r t +1 = " T(! r t ) + ! t

Projection
on S

NoisyPVI LSPE

A simulation-based approximation to PVI

Dates to 1996 (Bertsekas and Ioffe); also in the Bertsekas and Tsitsiklis
(1996) book. Conceptually:

LSPE: ! rt+ 1 = " T (! rt )
| {z }

PVI

+ εt , εt is simulation noise with εt ! 0

No stepsize unlike TD(λ)

Allows for a favorable initial guess r0; may be an advantage in
optimistic/few samples approximate policy iteration

Convergence rate: LSPE Òtracks" LSTD, but differs in early stages
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Advantages of Projected Equation Methods in DP

When using simulation:

All operations are done in low-dimension

The high-dimensional vector x need not be stored

There is a projection norm (the distribution norm) that induces
contraction of ! T and a priori error bounds

The projection norm is implemented in simulation - need not be known a
priori
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General/NonDP Projected Equation Framework

We consider general projected equations x = ! T (x) as approximations
to general (nonDP) Þxed point equationsx = T (x).

Also more general Euclidean projections (on a convex subset of a
subspace S).

In this talk we focus primarily on linear Þxed point problems

T (x) = Ax + b

and projection on a (full) subspace.

Difference from DP: No Markov chain, no contraction guarantee
Methods:

LSTD analog (does not require ! A to be a contraction)
LSPE analog and scaled versions/extensions (requires ! A to be a
contraction)
TD(! ) analog (requires ! A to be a contraction)

Advantages maintained: All operations are done in low-dimension and
the high-dimensional vector x need not be stored
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Connection of Projected Equations and Variational Inequalities

Consider
x = ! T (x)

where ! is the projection operation onto a closed convex subset öS of the
subspace S (w/ respect to weighted norm ! á ! ! ; " : positive deÞnite).

x ! x∗ x∗ x∗ ! T(x∗) T(x∗)

SubspaceS Set öS

1

x ! x! x! x! ! T(x! ) T(x! )

SubspaceS Set öS

1

x ! x∗ x∗ x∗ ! T(x∗) T(x∗) x∗ = ! r ∗

SubspaceS = { ! r | r " # s} Set öS

1

x ! x! x! x! ! T(x! ) T(x! ) ΠT(x! ) = x! = Φr !

SubspaceS = { Φr | r " # s} Set öS

1

x ! x∗ x∗ x∗ ! T(x∗) T(x∗) ! T(x∗) = x∗ = " r ∗

Subspace S = { " r | r " # s} Set Ŝ

x = " r

1

From the properties of projection,
`
x ! " T (x! )

«""( x " x ! ) # 0, $ x % öS

This is a variational inequality: Find x! % öS such that

f (x ! )"(x " x ! ) # 0, $ x % öS,

where f (x) = "
`
x " T (x)

«
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Equivalence Conclusion

We have two equivalent problems:
The projected equation

x = ! T (x)

where ! is projection with respect to ! á ! " on convex öS " S
The special form VI

f (# r ! )"#( r # r ! ) $ 0, %r & R,

where
f (x) = "

`
x # T (x)

´
, R = { r | # r & öS}

Every projected equation x = ! T (x) is obtained as follows:
Start with a suitable VI

f (x ! )"(x # x! ) $ 0, %x & X,

where X is convex
Restrict the solution to be of the form x = # r

Some special cases:
X = ' n: VI <==> f (x! ) = 0 (e.g., BellmanÕs equation in DP)
f (x) = ( H(x): VI <==> Minimize H(x) over x & X (e.g., approximate LP)
Cooperative and zero-sum games, etc.
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Iterative Methods for VI

Consider the VI

f (! r ! )"!( r ! r ! ) " 0, # r $ R,

where R is a closed convex set.

May be solved by iterative methods of the form

rk+ 1 = PD,R
ö
rk ! ! D# 1! "f (! rk )

÷
,

where ! is a positive stepsize, D is a positive deÞnite symmetric matrix,
and PD,R[á] denotes projection on R with respect to norm %r%D =

&
r "Dr .

Using a classical result: Assume " T is a contraction and ! has linearly
independent columns. Then for ! sufÞciently small, the method
converges to the unique solution r ! .

Special result: (Bertsekas and Gafni 1982) Assume " T is a contraction
and R is polyhedral. Then for ! sufÞciently small, the method converges
at a linear rate to some solution r ! (even without the linear
independence assumption on ! ).
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Iterative Methods for Projected Linear Equations

Assume that ! T is a contraction with respect to ! á ! Ξ and has Þxed point
x∗.

For simplicity, also assume no constraint and T is linear:

T (x) = Ax + b

The equivalent VI is " ′f (" r ) = 0 or

" ′f (" r ) = " ′#
`
" r " T (" r )

«
= " ′#(" r " A" r " b) = 0,

or
Cr = d, (LSTD equation in DP)

with
C = " ′#( I " A)" , d = " ′#b

The iterative method becomes

rk+1 = rk " ! D−1(Crk " d)

and D just scales the direction.
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Convergence Properties

N (! ) Ra(! !) = N (! )" R# = { r | ! r = x#} r 0

x − x# = ! (r − r #) x# x# − T(x#) T(x#) " T(x#) = x# = ! r #

SubspaceS = { ! r | r ∈ #s} Set öS 0

x = ! r

1

N (! ) Ra(! !) = N (! )" R# = { r | ! r = x#} r 0

x ! x# = ! (r ! r #) x# x# ! T(x#) T(x#) " T(x#) = x# = ! r #

SubspaceS = { ! r | r " # s} Set öS 0

x = ! r

1

N (! ) Ra(! !) = N (! )" R# = { r | ! r = x#} r 0

x ! x# = ! (r ! r #) x# x# ! T(x#) T(x#) " T(x#) = x# = ! r #

SubspaceS = { ! r | r " # s} Set öS 0

x = ! r

1

N (! ) Ra(! !) = N (! )" R# = { r | ! r = x#} ör0

x ! x# = ! (r ! r #) x# x# ! T(x#) T(x#) " T(x#) = x# = ! r #

SubspaceS = { ! r | r " # s} Set öS 0

x = ! r

1

N (! ) Ra(! !) = N (! )" R# = { r | ! r = x#} ör0

x ! x# = ! (r ! r #) x# x# ! T(x#) T(x#) " T(x#) = x# = ! r # { r k }

SubspaceS = { ! r | r " # s} Set öS 0

x = ! r

1

N (! ) Ra(! !) = N (! )" R# = { r | ! r = x#} r̂ 0

x ! x# = ! (r ! r #) x# x# ! T(x#) T(x#) " T(x#) = x# = ! r # { r k }

Subspace S = { ! r | r " # s} Set Ŝ 0

x = ! r

1

N (! ) Ra(! !) = N (! )" R# = { r | ! r = x#} ör0

x ! x# = ! (r ! r #) x# x# ! T(x#) T(x#) " T(x#) = x# = ! r # { r k }

SubspaceS = { ! r | r " # s} Set öS 0

Limit of { r k }
x = ! r

1

N (! ) Ra(! !) = N (! )" R# = { r | ! r = x#} ör0

x ! x# = ! (r ! r #) x# x# ! T(x#) T(x#) " T(x#) = x# = ! r # { r k }

r 0 + D $ 1Ra(C)

SubspaceS = { ! r | r " # s} Set öS 0

Limit of { r k }
x = ! r

1

N(! ) = N(C) Ra(! !) = N(! )" R# = {r | ! r = x#} ör 0

x − x# = ! (r − r #) x# x# − T(x#) T(x#) " T(x#) = x# = ! r # {r k}

r 0 + D $ 1Ra(C)

SubspaceS = {! r | r ∈ #s} Set öS 0

Limit of {r k}
x = ! r

1

N(! ) = N(C) Ra(! !) = N(! )" R# = {r | ! r = x#} ör 0

x ! x# = ! (r ! r #) x# x# ! T(x#) T(x#) " T(x#) = x# = ! r # {r k}

r 0 + D $ 1Ra(C)

SubspaceS = {! r | r " # s} Set öS 0

Limit of {r k}
x = ! r

1

For ! sufÞciently small the iterative method

rk+ 1 = rk ! ! D! 1(Crk ! d), C = Φ"Ξ(I ! A)Φ, d = Φ"Ξb

converges at a linear rate:
To the unique r# with ! r# = x# if ! has linearly independent columns.
To some r# in the solution set R# = { r | ! r = x# } along a linear manifold
that passes through r0 if ! does not have linearly independent columns.
To the unique projection ör0 of r0 onto R# if D = I.

The high-dimensional sequence Φrk converges to x# .
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Special Cases

Projected Value Iteration/Jacobi method

D = ! ! "! , ! ! (0, 1],

rk+ 1 = rk " ! (! ! "!) " 1(Crk " d)

Requires that ! has full rank.
Important advantage: Known stepsize range for convergence.
For ! = 1 it becomes

xk+ 1 = " T (xk )
where xk = ! rk .
For approximate DP it is equivalent to projected value iteration.
It is scale-free: { xk } does not depend on ! (only on S).

Simple iteration (D = I)

rk+ 1 = rk " ! (Crk " d)

Converges for ! sufÞciently small.
Another low-overhead choice:

D: a diagonal approximation to ! ! "!

Converges for ! sufÞciently small, and usually close to 1.
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Simulation-Based Versions

For
C = ! ! "( I ! A)! , d = ! ! " b

with " : diagonal, consider the projected equation

Cr = d,

and the iteration
rk+ 1 = rk ! ! D" 1(Crk ! d)

Use k samples to compute simulation-based approximations

Ck " C, dk " d

Approximate the projected equation by

Ck r = dk , (LSTD-type method)

and approximate the iterative method with

rk+ 1 = rk ! ! D" 1
k (Ck rk ! dk ), (Scaled LSPE-type method)

where
Dk # D > 0
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Simulation by Row and Column Sampling

Row Sampling According to !

i 0 i 1

j 0 j 1

ik i k+1

jk j k+1

. . . . . .

Column Sampling
According to P

Row sampling: Generate sequence { i0, i1, . . .} according to ξ (the
diagonal of ! ), i.e., relative frequency of each row i is ξi

Column sampling: Generate sequence
ù

(i0, j0), (i1, j1), . . .
ø

according to
some transition probability matrix P with

pij > 0 if aij != 0,

i.e., for each i, the relative frequency of (i, j ) is pij

Row sampling may be done using a Markov chain with transition matrix
Q (unrelated to P)

Row sampling may also be done without a Markov chain - just sample
rows according to some known distribution ξ (e.g., a uniform)
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Equation Approximation (LSTD-Type) Method

Approximation of C and d by simulation:

C = ! ! "( I − A)! ∼ Ck =
1

k + 1

kX

t= 0

! (it )
ã

! (it ) −
ait jt

pit jt
! (jt )

Ç!

,

d = ! ! " b ∼ dk =
1

k + 1

kX

t= 0

! (it )bit

We have by law of large numbers Ck → C, dk → d.

Equation approximation: Solve the equation Ck r = dk in place of Cr = d.

If ! has full rank, Ck is invertible for large k.

The method is scale-free with respect to features: The high-dimensional
sequence ! C" 1

k dk does not depend on ! (only on the subspace S).
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Iterative (Scaled LSPE-Type) Method

Simulation-based iteration

rk+ 1 = rk ! ! D! 1
k (Ck rk ! dk )

where
Dk " D > 0

Several choices for Dk :
Analog of projected value iteration (works with ! = 1):

Dk =
1

k + 1

kX

t= 0

" (it )" (it )
",

or for # > 0,

Dk =
1

k + 1

 

#I +
kX

t= 0

" (it )" (it )
"

!

Version with diagonal approximation to Dk above
Simple iteration Dk = I
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Scale-Free Rate of Convergence

The choice of D, ! , and ! affect substantially the convergence rate of
the deterministic iteration

rk+ 1 = rk ! ! D! 1(Crk ! d)

The choices of Dk , ! , and ! DO NOT affect the convergence rate of the
simulation-based version

rk+ 1 = rk ! ! D! 1
k (Ck rk ! dk )

as long as the method converges.
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JustiÞcation - Two-Time Scale Proof

Reason: The deterministic iteration

rk+ 1 = rk ! ! D! 1(Crk ! d)

converges fast relative to the speed of the simulation.

The simulation-based version

rk+ 1 = rk ! ! D! 1
k (Ck rk ! dk )

ÒseesDk , Ck , and dk as essentially constant."

For any Dk and ! , the sequence { ! rk } Òtracks" (with prob. 1) the ÒLDTD"
sequence ! C! 1

k dk which is scale-free and does not depend on ! .
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Relation to TD(! )

If in the simple method (Dk = I) we use a single sample approximation to
Ck and dk :

Ck = ! (ik )
ã

! (ik ) !
aik jk

pik jk

! (jk )
Ç!

, dk = ! (ik )bik

we obtain TD(0) (generalized for nonDP fixed point problems).
It takes the form

rk+ 1 = rk ! " k (Ck rk ! dk )

where " k must be diminishing for convergence (to “average" the
simulation noise), and

Ck rk ! dk = ! (ik ) á(the TD)

An extension with direction scaling (Choi and VanRoy, 2006)

rk+ 1 = rk ! " k D" 1
k (Ck rk ! dk )

If Ck and dk are approximations to C(! ) and d(! ) , we obtain (extensions
of) TD(#).
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Rate of Convergence of Low-Dimensional Sequences { rk }

For any Dk and ! :

The low-dimensional scaled LSPE-type iterates track the LSTD-type iterates.

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
!20

!15

!10

!5

0

5

k

 

 

Limit

rk,! = ! C! 1
k,! dk,!

örk,! : D = ! T "!

÷rk,! : D = diag(! T "!)

rk,! : D = I, ! = 0 .1
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Rate of Convergence of High-Dimensional Sequences { ! rk }

For any Dk , ! , and feature representation of S:

The high-dimensional scaled LSPE-type iterates track the high-dimensional
LSTD-type iterates (which do not depend on feature scaling).
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Concluding Remarks re NonDP Problems

TD methods can be naturally extended to solve more general (nonDP)
problems with basis function approximation.

This leads to a Monte-Carlo Galerkin approximation methodology. A vast
area of applications, e.g., operator equations, PDEs, inverse problems,
boundary-value problems, regression, optimization, etc.

The main advantage is solving (approximately) large-dimensional
problems with low-order calculations.

UniÞcation through a connection with VIs.

The overall approach is simple:
Start with a VI in high-dimension x (e.g., linear equation, Þxed point problem,
regression, optimization, game problem, etc)
Do basis function approximation x ! ! r
Pick a deterministic (direct or iterative) method for the resulting
low-dimension VI
Write it in terms of inner products/expected values
Approximate the expected values by simulation

Important issues: Clever implementation, convergence analysis, efÞcient
simulation, variance reduction, constraint sampling and/or aggregation.
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Concluding Remarks re DP

New iterative TD methods (scaled LSPE) have been obtained.

Their rate of convergence is scale-free (does not depend on direction
scaling matrix D, stepsize ! , and feature matrix ! ) Ð they all track the
(scale-free) sequence generated by LSTD.

With diagonal scaling the overhead per iteration is improved over
LSTD/LSPE (no matrix inversion).
For convergence and rate of convergence the full rank assumption on !
is immaterial.

TD(! ) will converge to the unique projection of the starting weights r0 on the
manifold of solutions.
Scaled LSPE will converge to some (random) solution.


